
Gamified Task Manager

Marc BUTLER
EMAIL: marcbutler@southern.edu

supervised by
Willard MUNGER, PhD.
Robert ORDÓÑEZ, M.S.

May 5, 2022

1

CONTENTS

I Introduction 2
I-A Motivation . 2
I-B Problem Statement . 2

II The Setting 2
II-A Apps on the Market . 2
II-B Explored Research . 3

II-B1 Exploration of mobile trackers . 3
II-B2 The effects of smartphone notifications on users . 3
II-B3 Mood-monitoring Apps . 3
II-B4 How the Pomodoro technique can reduce procrastination in grad students 3
II-B5 Time management for students . 3
II-B6 Research in NoSQL and SQL Databases for Mobile Applications 4
II-B7 Firebase for Android development . 4

III Proposed Project 4
III-A Description of the proposed solution, approach, or methodology . 4
III-B Delineation of major tasks . 4
III-C Description of the expected final deliverables . 4
III-D Software and Hardware Requirements . 4
III-E Use Case Diagram . 4
III-F Project Timeline . 4

IV Testing/Evaluation 4
IV-A Expected Outcomes Based on Project Requirements . 5
IV-B Description of the Specifics . 5
IV-C Method of Evaluation . 5

V Implementation 5
V-A Updated Problem Statement . 5
V-B Determined Solution . 6
V-C Technologies and Updated Method . 6

VI Results 7
VI-A Application Capabilities . 7
VI-B Outcome of the Specifics . 8
VI-C Testing . 9
VI-D Documentation . 9

VII Conclusion 10

LIST OF FIGURES

1 Note that that CRUD will denote the ability to create, read, update, and delete operations–essentially it allows the
user to manage with full capacity. 5

2 Task management application estimated development timeline; approximately 20 hours each. 5
3 Various screens that represent the flow of the architecture known as the Pomodoro Game Switch (PGS). 6
4 The 4 states of that occur on the timer screen. 6
5 The task screen which displays the users task and game statistics. 7
6 The Task Card prefab that has two main buttons. 7
7 The data architecture that shows the interfaces between various c# classes and firebase. 8
8 The results of the study of 11 participants with 5 metrics. 9

LIST OF TABLES

I The most popular task management apps on the market . 3

2

Gamified Task Manager
MARC BUTLER

Abstract—In this paper we aim to remove the difficult struc-
turing of tasks through a task management app that is to be
developed in the winter of 2022. The target audience in this work
will consist of college students and will be tested or evaluated in
terms of a how ease the UI is to interpret. We cover multiple task
management applications that are available on the Google Play
Store. Additionally our team has researched development tools,
psychological nature of students employing a task management
system, and the effects of smartphone notifications.

I. INTRODUCTION

A. Motivation

Imagine the stress a college student in Computer Architec-
ture and Calculus II courses will have during finals week. The
only method to pass classes with an acceptable grade is to
have reasonable discipline.

Studies show a high correlation between increased mobile
phone usage and unsatisfactory grades [1]. Furthermore, ex-
cessive notifications often distract college students [2]. Many
time management solutions exist on an array of platforms to
aid in the correction of this issue, but these applications lack
cohesion, integration with other third party tools, or an easy-
to-use interface.

The Pomodoro technique has users spend about twenty-
five minutes studying and the next five minutes taking a
break during each Pomodoro session [3]. It is because of this
students will be more focused when they come back to study.
This effect promotes study efficiency and time management.

Our new cutting-edge Pomodoro scheduling mobile app
will mend the situation. The application will be able to shred
through study time and revamp study efficiency all through
gamifying a variable timer. All distracting notifications will
be disabled and the user will be rewarded through his or her
great concentration with an aesthetically pleasing UI trophy to
be added to his or her trophy case. This trophy case will store
the user’s trophies with each containing a memo of what task
the user had accomplished.

B. Problem Statement

College students want to study efficiently and waste less
time preparing for exams. Existing solutions do not provide
aesthetic animations, time management techniques, or are not
exciting–according to the ratings. This can be seen in Table 1
Therefore it is valuable for college students with smartphones
to utilize our task management system: a gamified mobile
application implementing features such as the Pomodoro tech-
nique.

With this application we implement the Pomodoro timer
and a task management system to solve disorganization and
poor time management which are two of the leading causes
of college student class failure. Our proposed application is

targeted at college students primarily, but should be available
to anyone with at least an Android device.

II. THE SETTING

A. Apps on the Market

Some of the more popular habit or scheduling managing
apps on the Google Play Store include Forest [4] and Habit
Forest [5]. The Forest app has won the award for the 2018
Google Play Editors’ Choice Top Productivity App. It touts
the ability to grow a tree when a task is completed through
gamification. A user can set reminders, custom phrases, and
use popular timer options such that utilize the Pomodoro
technique. The Habit Forest, as the name suggests, allows the
creation of habits while also supporting reminders to keep up
good habits. Much like Forest, this application has “trees” that
will sprout into foliage denoting a habit.

Among other smartphone apps pertaining to task manage-
ment that were discovered on the Google Play Store are
Habatica [6], Todolist: To-Do List & Tasks [7], and LifeUp:
Gamification To-Do & Tasks List | Habit RPG [8]. A more
comprehensive list of apps and their properties can be viewed
in Table 1 which additonally include Do It Now: RPG To Do
List. Habit Tracker. Planner [9], Pomodoro [10], Epic To Do
List [11] and Level up Life [12].

Our fields in how we determine a great task management,
study, or Pomodoro timing application include 13 fields:

1) Rating: A Rating from the Google Play Store
2) Cost: A cost in $USD
3) Pomodoro Timer: If the application has a Pomodoro

timer
4) Animations: Are there fantastic animations?
5) UI: In regards to the look and interaction of the appli-

cation
6) Tutorial: Is there a tutorial that shows how to use the

application and what is the quality?
7) Skills: Represents a category in which a user may place

a task to improve on; programming, swimming, hiking,
etc.; Is it available?

8) Attributes: Represents statistics such as strength,
charisma, and intelligence

9) Customization: Can the theme of the app, tasks colors,
or even the font can be edited?

10) Statistics / Progress: Is there a way to show user
progress in task completion? Is it graphical?

11) Bad / Good Habits: Is there a management of creating
new good habits or working to drop bad habits

12) In-Game Currency: An incentive in the form of virtual
coins, gems or other denominations for users to stay
motivated with purchases from an in-game shop; earn
through task completion

3

APP Habitica Todolist Do it Now Pomodoro

Epic-
to-
do
list

Level
up
Life

LifeUp

Rating 4.3 4.5 4.4 4.7 4.7 4.1 4.6
Cost Free Free Free Free Free Free $2.99
Pomodoro Timer No No No Yes No No Yes
Animations Minimal Minimal Minimal Yes Yes Minimal Yes
UI Pleasing Pleasing Average Simplistic Style Average Very
Tutorial Yes No Yes No Yes Yes Yes
Skills Yes No Yes No Yes Yes Yes
Attributes Yes No Yes No Yes Yes Yes
Customization Yes No Yes No Yes Minimal Yes
Statistics / Progress Some Yes Yes Yes Yes Yes Yes
Bad / Good Habits Yes No Yes No Yes Maybe Yes
In-Game Currency Yes No Yes No Yes No Yes
Gamified Yes No Maybe No Maybe No Maybe

TABLE I: The most popular task management apps on the market

13) Gamified: Is the application playable or does it have
a entertaining atmosphere? Do user choices and task
completion affect the state of a game?

Although these applications are splendid in what they do,
they lack the core functionality of allowing users with various
options. This is explained by reviewers of the application who
have claimed that there was no way to pause and resume a task
and the inability to control the sound and music for the Forest
app [4]. The current challenges that Habit Forest face are the
lack of options to re-edit or categorize habits with additional
high severity bugs such as notifications not showing up or the
incapacity to distinguish AM or PM time.

B. Explored Research

Among some of our research that was conducted:
1) Exploration of mobile trackers [13]
2) The effects of smartphone notifications on users [14]
3) Mood-monitoring Apps [15]

These are among the subset of resources that center
the focus on mobile applications. Our research has also
focused on sociological and psychological topics:

4) How the Pomodoro Technique can reduce procrasti-
nation in Grad students [16]

5) Time management for students [17]
Finally, we explored implementation methods using
frame works and tools through:

6) Research in NoSQL and SQL Databases for Mobile
Applications [18]

7) Firebase1 for Android development [19]

1) Exploration of mobile trackers: In our research of the
development of mobile trackers, we had determined that there
is an initial phase that includes idea generation, research and
development, testing, analysis, and a roll out phase [13].

2) The effects of smartphone notifications on users: From
research on the effects of notifications we had determined that
most notifications, are considered unimportant and actually
distracting to the user [14]. This is largely determined by the
content of the notifications. An example of bad notification

1https://firebase.google.com/

content is overly wordy or abstract. Purportedly, there is a
correct time to deliver notifications to the user [14]. People
are more likely to be distracted during a nine-to-five work
day, during a school day, or while sleeping. Between these
times users are more likely to be distracted during work
[14]. Another point discovered within our research was that
notifications are generally useful. The closing of notifications
does not mean that the notification did not help the user.
That does not go without saying that notifications can still
be intrusive.

3) Mood-monitoring Apps: Our analysis of mood-
monitoring apps consists of discoveries on what users look
for in an application. This is supported by reviews that a
user would make. Purportedly, over one-third of reviews are
centered around accessibility [15]. Simplicity was one of the
major components that makes an app accessible especially in
regard to a mood tracker app. Another esteemed component
in what users desire in an application is flexibility. Users
would want to be able to customize their experience [15].
For us, this means granting the ability to modify themes
of our app. Aside from these components, user requests are
essential to the growth of the app [15]. Multiple users would
provide feature request in their reviews. This is evidence that a
community between the developer(s) and the users is important
and will be the driving force behind our studying application.
Our community is generally targeted at college students with
smartphones so it is logical to communicate with college
students on this project.

4) How the Pomodoro technique can reduce procrasti-
nation in grad students: In regard to graduate students, a
research study was done on affects of a Pomodoro timer on
student procrastination. In the study, it was determined that
student procrastination was negatively correlated to the GPA
of students [16]. However, when the students were introduced
to an online task management timer, their late work would
decrease, greater focus was achieved, and motivation was
instilled in the students.

5) Time management for students: A psychological topic
that was explored was time management of students. Students
that study harder do not necessarily translate their difficult
efforts to academic performance [17]. Prioritization is key
to spend time appropriately with a given task. This task

4

prioritization should be included in our task management
application. Specifically tasks can be broken up into urgency
and importance to determine priority. A simple rule of thumb
that was found was if it cannot be done in two minutes set a
scheduled time for it or set it for later [17]. This kind of task
scheduling or task priority placement can be represented in a
priority queue with the high priority tasks ready to be taken
out first in our application. Users will be able to complete
tasks more efficiently this way.

6) Research in NoSQL and SQL Databases for Mobile
Applications: Finally our research led us to the various tools
and frameworks that could be used in our development of
our application. We specifically look at databases and storage
options for a mobile device that could pose issues. Because
mobile devices are smaller they will have smaller resources
and thus the processing power, memory, and storage are not
the same as on a desktop computer. This is to say that
no “hard disk techniques” can be used [18]. Exploring our
options, we had determined we could use MongoDB and
SQLite. The criticism against MongoDB, as it is a NoSQL
database system, is whether or not a schema can meet the
proper user requirements [18]. In other words, normalization
of databases may be more difficult in terms of designing
a database. MongoDB uses a JSON in terms of querying
whereas SQL has its own version syntax for querying.

7) Firebase for Android development: Aside from these
differences, a third option known as Firebase offers a storage
solution on the cloud [19]. Firebase is backed by Google
allowing fast cross-platform development [20]. For our appli-
cation, Firebase may answer most of our needs while reducing
complexity.

III. PROPOSED PROJECT

A. Description of the proposed solution, approach, or method-
ology

The method we will use to develop the Pomodoro study
application is to select proper frameworks for development.
These frameworks shall include the front-end, the back-end,
and a data storage solution. Because of this we have chosen
to research React Native, Firebase, and SQLlite.

B. Delineation of major tasks

These major tasks can be separated through experimentation
with React Native, Firebase, and SQLite. During experimen-
tation of React Native we plan on testing how well animations
will be implemented. Specifically we will make small proto-
types of the trophies that could be earned in the application.
React Native must be able to handle trivial tests such as fast
rendering. In regards to a database solution, we will be testing
SQLlite and Firebase in terms of speed in retrieving user data,
ease with data migration, and accessibility. In order to add a
local storage, the same tests would be applied to React Native’s
Async Storage library. The project should also contain the
basics of a timer and will be developed in Javascript and React
Native libraries. To create a gamified experience the Unity
Game Engine may be incorporated within this project.

C. Description of the expected final deliverables

The project can expect to have task creation, task manage-
ment, and task review while also containing vibrant anima-
tions, and an ability to customize. Task creation consists of
being able to provide a name, a description, and the current
date. Task management simply allows the user to rearrange
the tasks in a priority queue and editing of a task if it has not
been committed. Task review will include the ability to visit
previous tasks so that the user would be able to reflect on their
work with useful statistics such as time spent on a task or
concentration level. The application should include energetic
animations that provide a refined aesthetic that complement
the apps functions. User customability is very important in
this application as it should allow the user to customize the
color palette of a task, the boards they work on, and the overall
theme of the app.

D. Software and Hardware Requirements

The app will be run at least on Android phones, but as React
Native is being used, it may be available for iOS. Software
tools used to build this application will be a personal computer
with access to a visual studio IDE, terminal access, either
firebase or SQLlite, and javascript libraries. Any dependencies
should be included in the packaged app.

E. Use Case Diagram

Upon looking at the user requirements, we have need to
design a use case diagram to display the users abilities within
the application. In Fig. 1 we can see that the user has four
major abilites within the app. Each of these bubbles are high
level abilities a user can do. Specifically, the CRUD Timer
and CRUD Task can be broken down into: creating timers
and tasks, reading timers and tasks (the user will be able to
clearly see the text they created), updating their timers and
tasks they have created, and finally being able to delete their
timers and tasks.

The Change Theme ability allow the user to change color
of the application or task and timer UI display. The Customize
Board ability will allow decoration of these boards, theming of
the board, styling, and management of display of the board(s).

F. Project Timeline

The tasks fall into five sections: UI Skeleton, Database
solution, full customibility of the app, completed animations,
and fix remaining bugs to deploy to the Google Play store.
Fig. 2 shows an overview of what is expected in the devel-
opment phase of this application. Each of these bubbles is
approximately 20 hours in length. These are rough estimates
and depending on external factors these may change during
development with constraints such as time, software limitation,
or hardware restriction.

IV. TESTING/EVALUATION

At deployment, the targeted group will be subset of students
at Southern Adventist University. This subset of students could
range from 10 to 15 students.

5

Fig. 1: Note that that CRUD will denote the ability to create,
read, update, and delete operations–essentially it allows the
user to manage with full capacity.

Fig. 2: Task management application estimated development
timeline; approximately 20 hours each.

A. Expected Outcomes Based on Project Requirements

The expected outcomes on this project are users will be
able to create customizable, editable tasks in which users can
set specified times in which fluid animations are played. The
app will have smooth transitions in the navigation portion of
the app. The trophies–completed-tasks–will have a navigation
page in which previous tasks can be viewed.

B. Description of the Specifics

There are five tests with their given acceptance constraint.
These are the five different characteristics that the user will be
test on:

1) Number of misclicks: 0-2 misclicks are acceptable
2) Time to create a task: time to create a task without a

description should take no more than 5 seconds
3) Time to get to goal state: time to navigate through all

navigation windows to the goal state in the app should
take more than 30 seconds

4) Steps taken to get to the goal state: if n is the number
of goal states it should take only n steps to get to goal
state

5) User retention: User retention should include the user
stays on the app for 60 seconds and interacts with the
app at least every 5 seconds

Each of these constraints will be averaged on each of the 10
to 15 participants. That is to say the average of misclicks of
these 10 to 15 college students is X. If X does not meet each
of their corresponding constraints, such as X > 2 misclicks,
then X, the average, must be repeated until it meets the given
constraint.

C. Method of Evaluation

In its simplest form, these specifics could be evaluated with
a timer, pen, and paper. A human actor, a college student,
would use the app against these specifics where our team
would count the number of misclicks and steps where time can
be recorded through a simple digital timer on a smartphone.
The secondary option is to use external software to count the
misclicks and time such as maze.design.

V. IMPLEMENTATION

A. Updated Problem Statement

In order to become more inclusive of the proposed audience,
a new problem statement was established. This extended prob-
lem statement’s audience was broadened to handle anyone with
desire to complete a task, aside from only college students.
Essentially, every busy person would like to spend less time
on repetitive tasks and complete tasks efficiently. Existing
solutions fail by not effectively gamifying a task management
application. Quite simply, they have been deemed monotonous
according to the ratings of the Google Play store as seen in
[12].

6

B. Determined Solution

The proposed solution, Gamified Task Manager, in this
paper solves all of these issues. In terms of task management
the solution enables the user to speed through any added tasks
by the user. This task handling process occurs over various
screens in the application which can be seen in the provided
state diagram in Fig. 3 Theses 4 screens represent high-level
states in the Gamified Task Manager.

Fig. 3: Various screens that represent the flow of the architec-
ture known as the Pomodoro Game Switch (PGS).

C. Technologies and Updated Method

Due to integration issues with Android Studio and Unity as
a library2 the technologies of this paper have changed. One
reason for this is that building in gradle raised various issues.
These issues include lack of proper dependencies as well as
version inconsistencies. Another reason for this change in
development tools is because Unity as a Library, at the time of
development, was no longer actively maintained. Specifically,
this tool, at the time of this work, was last edited in May,
2021. Aside from this lack of upkeep with the continuously
growing versions of Unity, the tool had several inconsistencies
in the documentation–specifically relating to gradle.

Instead of using Unity as a library inside of a React Native
application, it was decided that Unity itself would handle
all of the front-end. This proposed another issue: access to
OS related functions of a user’s device. React Native (and
potentially Expo), as the name suggests, would have allowed
OS level operations on Android and iOS devices. Since this
work had to be migrated to Unity, various Unity packages were
used instead to access OS operations such as time and date and
notifications. One such package known as Voxel Busters Cross
Platform Essential Kit enabled these abilities3. Another Unity
related package that was utilized was the Graph and Chart
package4. As the name suggests, this package saved time in
creation of charts for screens of the application such as the
status-screen.

For diagramming, Lucid Chart5 was utilized for its flex-
ibility in designing class hierarchy and dependencies. The

2https://docs.unity3d.com/2019.3/Documentation/Manual/UnityasaLibrary.html
3https://assetstore.essentialkit.voxelbusters.com/
4https://assetstore.unity.com/packages/tools/gui/graph-and-chart-78488
5https://www.lucidchart.com/pages/

greatest reason for this tool was the rapid ability to visualize
the database connections with the C# scripts in unity. In turn,
this allowed for the dataflow that was the backbone of the
application.

This data was handled via Firebase’s Real Time Database.
Additionally Firebase provided authentication through Fire-
base Authentication. The Real Time Database is a NoSQL
database that stores string data in the form of JSON. This
database management system had reasonable documentation
and support for Unity. In terms of Authentication, users are
allowed to sign-in with Google–provided that the user has a
Google account on their device.

For version control, GitHub was originally considered.
However, Unity’s built in source control system, Collaborate,
was employed for its direct integration with Unity and ease
of use. As of April of 2022 Unity has deemed Collaborate
deprecated. Despite this pitfall, Unity allowed migration to
Plastic SCM6–another source control system. This was the
final choice for version control in this work.

Fig. 4: The 4 states of that occur on the timer screen.

6https://www.plasticscm.com/

7

VI. RESULTS

A. Application Capabilities

The user may activate the task into its timer mode. Timer
mode has 4 states as shown in Fig. 4 the user can specify
the duration of the task, which at default is set to 25 minutes.
The user may then press a start button in which the timer
counts down until reaching 0 minutes and 0 seconds or until
the user presses a stop button. A progress bar denotes the
remaining time over the initial time. The stop button pauses
the timer in which the UI and back-end variables have ceased
updating their values. At this state, the user may press either
the resume button or the finish button. The resume button
simply resumes the allows the timer values to be updated
again as well as enables the progress bar to decrement. The
finish button, on the other hand, sends data to a singleton
class which contains a static field denoting user task data,
specifically called kanbanData. Additionally, the finish button
will redirect the user to the kanban screen and close the timer
screen.

If the timer had reached 00:00, the user will be redirected
to a mini-game screen. The mini-game screen is simply a
Unity scene that has its own hierarchy and is distinct from the
main application. Multiple “game scenes” have been created
that each contain a mini-game, a 5 minute timer, and a
score counter. These mini-games are typically managed by an
instance labeled “Game Manager” but all use a “game timer
script” that will end a game after the five minute game timer
is ended. This game timer is started as soon as the scene is
loaded and ends when the timer runs out. After the timer runs
out the user is directed to a results screen.

Fig. 5: The task screen which displays the users task and game
statistics.

This results screen receives the user’s score according to
the game and displays game related data related to the score.
Additionally, the screen will display a tasks completed card
in which user data related to the task completed is rendered.

Finally, the user may press the “kanban section” to navigate
back to the kanban screen where more processes may be
viewed.

User data can be seen on the status screen, as represented
in Fig. 5, which may be navigated via the navigation bar at
the bottom of the screen. Screens such as the kanban screen
and the status screen can be navigated easily for this. On the
status screen, the user may view task history in the form of
a time chart and game related data according to “level” and
“experience”.

The kanban screen is a Unity UI panel that holds the data
of a task lists. The kanban has one tasklist available to users
by default as well as an “add task list” screen. The kanban
displays one task list at the full resolution of the devices
screen at a time. However, the user may traverse the kanban
by scrolling horizontally to a given task list. The “add task
list” screen is always the last screen no matter how many task
lists get added to the kanban. This “add task list” screen adds
task lists by placing tasks at the previous index of the last
element in the kanban, i.e. the “add task list” screen’s index.

Like the kanban containing multiple task lists, each task list
may contain 0 or more tasks (in Unity, these are called task
cards). More tasks can be added via a “add task” button within
the task list–similar to the kanban containing a “add task list”
screen. These tasks are instantiated, every time presses the
button, in a vertical format under each task list within a given
window. If the number of tasks extend past the given window’s
mask then it will simply not be rendered unless the user scrolls
vertically on the task list’s window.

Fig. 6: The Task Card prefab that has two main buttons.

Each task has two buttons as seen in Fig. 6. The left most
button on the task is the edit button which has a small graphic
of a pencil. Tapping on this will allow the user to edit the task
data of this task by rendering another screen known as the
edit screen. The edit screen will allow text input and native
OS time and date input in the form of a calendar. The user
may then close the task editor in which the UI and data for the
edited task will be updated and sent to Firebase. The second
button of a given task displays the title of the text which is
renamed after utilizing the task editor screen and a progress bar
denoting the time spent on the task. If this button is pressed,
the kanban screen will be deactivated and the timer screen will
be populated with data.

In terms of data flow of the solution, various classes have
been involved in sending and receiving transactions. A small
portion of the application’s data flow can be witnessed in Fig.
7. Data flow begins with the user authenticating with Google
on the first screen. Data at this point is either retrieved from
a previous session if the user has existed before or created
for the first time. This data is simple information pertaining
to the user’s profile image, user name, and other identify-

8

Fig. 7: The data architecture that shows the interfaces between various c# classes and firebase.

ing information. The GoogleSignInController class handles
the bulk of this work through the UpdateCurrentUser() and
SyncDataWithFirebase() methods.

FireBaseManager handles retrieving, posting, updating, and
deleting user data–especially in the form of task data. It is
through this module that the CRUD operations described in
Fig. 1 can be marked as fulfilled.

The UserData class that acts like a singleton to store user
data that needs to be accessed by other classes. Furthermore,
it contains static fields that can be interacted with via other
classes. Most importantly, this class contains task data and
other vital information of the user.

Mutliple classes such as the ResultsScreen, StatusScreen,
TaskEditor, and Kanban rely on the UserData class. For
instance, the UserData class’s field for storing kanban data is
modified whenever a user creates, updates, or deletes a task.
Each task is represented by a TaskCard class which sends
data up to a higher level of abstaction–specifically its parent
TaskList. Similarly, each TaskList passes its self up to the
Kanban. This is accomplished by serializing the data, placing
it in C# lists, giving it to the UserData class, and finally posting
these changes to Firebase’s Real Time Database.

B. Outcome of the Specifics

Upon testing the description of the the specifics, a makeshift
desk was established with a poster promotion that incentivised
participants on the campus of Southern Adventist University
with donuts to test the proposed solution. The poster provided
students with information of the problem statement, the pro-
posed solution, the methodology, and future work. Addition-
ally, the poster supported a scannable, Quick Response (QR)
code that enabled students with Southern Adventist University
orgaization email with a 5 question Google Forms7.

Google Form inqury consisted of the following questions:

1) Without any additional information, what do you believe
this app was designed to do?

2) What features did you like?
3) On a scale from 1 to 5, where 1 is very difficult and 5

is very easy, how difficult was the app to use?
4) How effective, on a scale from 1 to 5 do you believe

the app was at achieving the task it was designed to?
(where 1 is not effective and 5 being very effective)

5) How responsive does the app feel? (on a scale from 1
to 5, where 1 is not effective and 5 being very effective)

7https://www.google.com/forms/about/

9

The total number of participants for this study was 11. Out
of the 11 students that had participated in the study, only
9 of them had successfully completed the survey. Out of
these 9 points of data 7 of the participants claimed that the
application was designed to manage tasks. 4 of them had stated
that their favorite feature of the application was the game
or gamification, 3 of them had claimed the UI as a favorite
feature–2 of them specifically appreciated the taskbar UI, 1
had mentioned timing as favorite feature, and 1 had stated
they were uncertain of a favorite feature. In terms of quantive
metrics, the highest rating in terms of application difficulty
was a 5 indicating the highest amount of ease according
to the survey. The lowest number was 2 which represented
a moderately difficult application. Application effectiveness’s
highest rating was given a 5 by 1 participant, meaning that the
application was highly effective, where the lowest scores were
3 given by 4 of the participants, denoting a moderate level of
effectiveness. The highest score in terms of responsiveness was
given a 4 by 5 students who had claimed an above average
rating for responsivness of the application where the lowest
score was given a 2 by one participant denoting a below
average responsive design.

Fig. 8: The results of the study of 11 participants with 5
metrics.

Aside from the Google Form inqury, UI tests were provided
as stated in Description of the Specifics subsection under the
Testing/Evaluation section. A total of 11 student participants
were selected in the study. Out of these 11, 8 of the participants
passed the acceptable number of misclicks criteria. A full
representation of this can be seen in Fig. 8 as a yellow
column. 5 of the pariticapants had managed to create a task
in under 5 seconds which denotes either too strong metric
requirements, the user was destracted during this phase, or
the UI was not enticing enough to garner a interaction. A
full chart can be seen in Fig. 8 as a green column. 4 of
the participants were able to get to the results screen–the
given goal state–where the rest of the 7 participants had failed
due to a timer bug issue. This issue was found and resolved
as mentioned later in this paper’s testing section. 3 of the
participants had passed the steps taken to get to the goal state
metric where the threshold was 6. One participant failed by
exceeding the threshold with a value of 11. The other 7 failed

due to inability to reach the goal screen. The threshold value,
6, was determined by accounting for the number of screens
that may be navigated to in current build. This includes: the
status screen, the task mangement screen, edit screen, timer,
minigame, results screen. A complete chart can be seen in Fig.
8 as a blue and purple column. 7 of the participants passed
the user retention metric where the other 4 had failed due to
distractions of outer sources.

C. Testing

Automated testing was performed via Unity Test Framework
where manual testing was conducted in a spreadsheet. Because
testing singleton classes from C# with Unity’s Testing Frame-
work proved to be inefficient. Nonetheless, the automated
tests deal with intialization of the task management screen
as various errors are were discovered here. These tests consist
of Navbar, TaskCard, and Timer tests for our application. The
Navbar test ensures that the correct number of elements are
intialized under the Navbar prefab. The TaskCard tests ensure
that TaskCards and TaskLists are initalized with the correct
children. This is to say that the Task Lists should contain a
single Add Task Button. Likewise the Kanban is ensured to
contain the default number of Task Lists where one is the
default Task List and the other is a Add Task List.

Provided in the Assets directory are manual tests that were
recorded in an spreadsheet. The form consists of a high-level
title of the test column, a expected result column, an actual
result column, and if the test had passed. Various tests were
recorded throughout the project timeline which ensured test
driven development (TDD). These tests cover subjects of user
interface (UI), data integrity, and CRUD operations.

D. Documentation

In order to build the Gamified Task Mangement solu-
tion, certain criteria must be met and steps must be done
in the correct order. Installation of Unity Hub is required;
the last version of Unity Hub used utilized is Unity Hub
3.3.1. Navigate to Unity’s projects directory, which should be
titled "UnityProjects", by default. This screen can typically
be entered by pressing the drop-down of the open button in
Unity Hub under the projects tab. Unzip the provided Unity
project file and place it in this directory. A reload of Unity
Hub may need to occur. The recommended editor version for
the Pomodoro Game Switch is 2020.3.26f1. Which may be
edited under the editor version column. If Unity crashes upon
starting the editor, reloading the editor and attempting to load
the project a second time will typically resolve the crash.

Upon loading the project the user should navigate to the
TaskManagerScreen scene in the project window stored in the
path of Assets/TaskManagerScreen. After double clicking to
open the TaskManagerScreen, ensure that the game view is
on a variant of portrait display by pressing the game window
and selecting a portrait size under the resolution background.
If Unity editor does not provide default portrait sizes, it is
recommended to create a custom portrait size such as 1080px
x 1350px.

10

In order to run the application, simply press the play button
at the top-center of the screen. Whenever the TaskEditorScreen
is enabled its prefab icon and text will appear at full opacity
under the screen canvas in the project hierarchy. To disable
and re-enable this, press this icon in the project hierarchy and
make sure the "is active" check-box is unticked beside the title
in the inspector window. This operation is crucial to close the
TaskEditorScreen as in Unity’s editor does not handle closing
window in the game. This is to say that naturally disabling
this TaskEditorScreen can only occur when built to an Android
device as of now. For this the user would have to press the
native back button on his or her Android device. Building
to Android device is also required for the mini-game screens
which only accept finger tap-input on Android devices rather
than Unity editor mouse-clicks. Additionally, building to an
Android device is required for syncing data with Firebase as
Google Authentication is not supported in Unity’s editor.

If a build to an Android device is absolutely necessary, a
keystore is required and is held by the projects owner. Once the
keystore has been acquired, navigate to File > Build Settings.
Ensure that the selected platform is Android. A Unity restart
may be required to install the packages needed to handle
building on Android such as necessary SDKs. The SDKs
can be installed via Unity Hub for a particular project. After
the platform has been selected, navigate to Player Settings
> Player > Publishing Settings. Enter the provided keystores
and close the project settings window. Insert a USB cable–
connecting an Android device. Finally, build with the "Build
And Run" button.

Aside from building the application, various game scenes
can be explored in the Assets/Scenes directory. C# scripts
are found under Assets/Scripts, Unity prefabs can be found
under Assets/Resources/Prefabs, and testing can be found in
the Assets and Assets/EditorTests paths. Manual testing is in
the Assets directory and requires a spreadsheet software to
open the spreadsheet or alternatively be viewed as read only as
a PDF. Automated tests found in the Assets/EditorTests must
be run by activating the Navbar, TimerPanel, and KanbanPanel
GameObjects. Unity Test Runner can be found in Window
> General > Test Runner. All tests may be run at once or
individually.

VII. CONCLUSION

After 100 hours of research, the work was adjusted to meet
more general goals. This is to say that the problem statement
was adapted to meet a broader group rather than college
students that wanted to find an efficient method of studying.
Consequently, a new solution and method for resolving the
new problem statement was developed. These changes, in turn,
resulted in a shift in technologies used in this work. Finally,
upon developing the application, future plans to improve the
application have been prepared.

Future work requires that an in-game shop which interacts
with the user’s in-game currency can be navigated from the
navigation bar. Additionally, the status screen should have the
capability to track the users tasks over weekly, monthly and
possibly yearly periods. This data would be rendered on the

TaskProgress graph. Other information concerning the Skills
graph and HabitProgress should be researched and supple-
mented with an appropriate frontend and backend. Adver-
tisements and other monentization options will be researched
involving the user’s in-game currency. Finally, publishing to
the Google Play store will be followed by review from Google
requirements.

REFERENCES

[1] R. Nelson, College classroom policies: Effects of “tech-
nology breaks” on student cell phone usage and grades,
2020.

[2] N. Johannes, H. Veling, T. Verwijmeren, and M. Bui-
jzen, “Hard to resist?: The effect of smartphone visibil-
ity and notifications on response inhibition,” Journal of
media psychology, vol. 31, no. 4, pp. 214–225, 2019.

[3] L. Scroggs, The pomodoro technique, [Accessed] on
12/6/2021, 2021. [Online]. Available: https : / / todoist .
com/productivity-methods/pomodoro-technique.

[4] Seekrtech, Forest - stay focused, be present, [Accessed]
on 10/13/2021, 2021. [Online]. Available: https : / /
forestapp.cc/.

[5] P. DESIGN, Habit forest - habit tracker, plans, goal
tracker, [Accessed] on 10/13/2021, 2021. [Online].
Available: https://play.google.com/store/apps/details?
id=com.pionestudio.treeofhabit&hl=en_US&gl=US.

[6] I. HabitRPG, Habitica, [Accessed] on 11/9/2021, 2021.
[Online]. Available: https://habitica.com/static/home.

[7] ©. D. Inc., Todoist: To-do list & tasks, [Accessed] on
11/9/2021, 2021. [Online]. Available: https : / / todoist .
com/.

[8] AyagiKei, Lifeup: Gamification to-do & tasks list |
habitrpg, [Accessed] on 11/9/2021, 2021. [Online].
Available: https://play.google.com/store/apps/details?
id=net.sarasarasa.lifeup&hl=en_US&gl=US.

[9] T. Lozovyi, Do it now: Rpg to do list. habit tracker.
planner, [Accessed] on 11/9/2021, 2021. [Online].
Available: https://play.google.com/store/apps/details?
id=com.levor.liferpgtasks&hl=en_US&gl=US.

[10] O. Upon, Pomodoro, [Accessed] on 11/9/2021, 2021.
[Online]. Available: https://play.google.com/store/apps/
details?id=com.onceupon.pomodoro&hl=en_US&gl=
US.

[11] A. Kolmachikhin, Epic to-do list — rpg planner with
reminders, [Accessed] on 11/9/2021, 2021. [Online].
Available: https://play.google.com/store/apps/details?
id=com.onceupon.pomodoro&hl=en_US&gl=US.

[12] ©. 2. lvluplife, Level up life, [Accessed] on 11/9/2021,
2021. [Online]. Available: https : / / play. google . com /
store/apps/details?id=com.lvluplife.lvluplife&hl=en_
US&gl=US.

[13] Z. Zainol and A. A. Ramli, “Let’s study: Mobile tracker
app for study group,” Global Business and Management
Research, vol. 10, no. 3, p. 1237, 2018.

11

[14] A. Visuri, N. van Berkel, T. Okoshi, J. Goncalves, and
V. Kostakos, “Understanding smartphone notifications’
user interactions and content importance,” International
journal of human-computer studies, vol. 128, pp. 72–85,
2019.

[15] E. Widnall, C. E. Grant, T. Wang, et al., “User per-
spectives of mood-monitoring apps available to young
people: Qualitative content analysis,” JMIR mHealth
and uHealth; JMIR Mhealth Uhealth, vol. 8, no. 10,
e18140, 2020.

[16] K. Almalki, O. Alharbi, W. Al-Ahmadi, and M. Aljo-
hani, Anti-procrastination online tool for graduate stu-
dents based on the pomodoro technique, 2020.

[17] F. Bast, “Crux of time management for students,” Res-
onance, vol. 21, no. 1, pp. 71–88, 2016.

[18] M. Fotache and D. Cogean, “Nosql and sql databases
for mobile applications. case study: Mongodb versus
postgresql,” Informatica Economica, vol. 17, no. 2,
pp. 41–58, 2013.

[19] A. K. S, Mastering Firebase for Android Development :
Build Real-Time, Scalable, and Cloud-enabled Android
Apps with Firebase. Birmingham: Packt Publishing,
Limited, 2018.

[20] G. LLC, Firebase, [Accessed] on 11/9/2021, 2021.
[Online]. Available: https://firebase.google.com/.

