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In the last two decades various human language learning applications, spaced

repetition software, online dictionaries, and artificial intelligent chat agents have

been developed. However, there is no solution to cohesively combine these

technologies into a comprehensive language learning application including skills

such as speaking, typing, listening, and reading. Our contribution is to provide

an immersive language learning web application to the end user which combines

spaced repetition, a study technique used to review information at systematic

intervals, and active recall, the process of purposely retrieving information from

memory during a review session, with an artificial intelligent conversational chat

agent both in voice and in text. The proposed solution created with Japanese as the

target language and English as the understood or source language. One benefit of

this approach is that two end users do not have to be present in order to encounter

new words through a natural conversational context. Another benefit is that a

given end-user can use the web application without the fear of offending another

person who speaks the language to be learned. What makes the proposed solution,

called Immersio, different than other existing applications is the combination of

the space repetition system which is tied to the chat page. Immersio was evaluated

by a native Japanese speaker. It received an average score of 3.24 out of 5.0 points



out of seventeen questions. In terms of five open-ended questions, the reviewer

likes the following: the chat page worked well and the grammar was mostly correct

and natural. However, he dislikes the following: Part-of-Speech and the dictionary,

which were not readily accessible. Also, he was unable to upload audio. Moreover,

he indicated that the review page was confusing, and he could not hear most of

the audio voice from the AI chat.
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Chapter 1

Introduction

This chapter discusses the outline for this project. First, it states the problem

statement and the motivation. Additionally, this chapter covers high-level imple-

mentation details of the proposed solution. The chapter concludes with project

objectives, limitations of existing solutions, delimitations, and an overview of the

project.

1.1 Problem Statement and Motivation

In the last two decades there has been a surge of several language learning

applications, both including web and mobile applications, which either employ

spaced repetition or artificial intelligence, usually through a conversational chat

agent. For example, SuperMemo1, a reputable language learning web application,

employs a flashcard system as well as an OpenAI2 GPT model. Another example

is Univerbal3, a web and mobile application which employs a conversational
1https://www.supermemo.com/
2https://chat.openai.com/
3https://www.univerbal.app/

https://www.supermemo.com/
https://chat.openai.com/
https://www.univerbal.app/
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agent. Both of these applications utilize their conversational agent to provide

dynamic interactions for a user including text messaging and speaking. However,

throughout the various applications that exist there does not currently exist a web

application that integrates both artificial intelligence, chat agents, an intuitive user

interface, and algorithms which space language learning into manageable units of

time.

Also, current applications do not utilize Part-of-Speech (POS) parsing of arti-

ficial intelligent text generated on-demand. POS can be thought of as pieces of

sentences which are broken up into verbs, grammar points, words, nouns, and

much more [2]. This is problematic because understanding how different POS

interact with each other is vital to the language learning process. Furthermore,

most POS items in existing solutions are hard-coded into a database which has a

negative side-effect of not accurately portraying the other surrounding POS items.

In particular, current dictionary tools, such as the JMDict project4 that consists

of the work of Jim Breen5 and EDRDG6 or Tatoeba7, another large language-to-

language database or repository, only allows for a language learning application

to provide POS information with predefined sentences from a database. Using

tools such as these has benefits in the sense that predefined sentences may be

grammatical and linguistically correct if the data was entered by a professional in

the target language. However, these approaches have the pitfall of containing errors

if the data was entered by a user with little knowledge on the target language.

Yet another issue of existing solutions is that audio generated via an artificial

intelligent conversational agent that employs spaced repetition is not widely
4https://www.edrdg.org/jmwsgi/srchform.py?svc=jmdict&sid=
5http://nihongo.monash.edu/cgi-bin/wwwjdic?9T
6https://www.edrdg.org/
7https://tatoeba.org/en/

https://www.edrdg.org/jmwsgi/srchform.py?svc=jmdict&sid=
http://nihongo.monash.edu/cgi-bin/wwwjdic?9T
https://www.edrdg.org/
https://tatoeba.org/en/
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utilized. This is problematic because it can be expensive to hire voice actors

who specialize in a particular language to read a script for a language lesson.

Furthermore, scripts must be created by someone and validated such that the

audio recorded by a given voice actor is linguistically correct. One of the existing

applications that inherits this pitfall is known as Pimsleur8, designed after Paul

Pimsleur’s method, which employs spaced repetition via audio lessons.

Additionally, it is rather difficult to find a real person who is willing to consis-

tently practice with another during a language exchange. A language exchange

is where two or more language learners engage in conversing with one another

in their target languages and explaining intricate details of their own language

to others. The caveats that typically come with traditional language exchanges is

that the two or more language learners have to either converse asynchronously

with a form of messaging or during a practical time in their schedules in which a

voice call can take place. Unfortunately, it is difficult for two or more real people

to find time to exchange languages. In addition, there may be cultural barriers

which may cause difficulty by discussing a certain topic. For instance, it may be

socially appropriate to speak about one topic in one culture but rather impolite to

speak about it in another.

1.2 Proposed Solution

Our contribution is an immersive language learning platform, which is known as

Immersio. Immersio was designed with Japanese as the target language for this

project. The goal of Immersio is to combine the immersive interaction of speaking

with a conversational agent that implements a spaced repetition system. Open
8https://www.pimsleur.com/c/how-to-learn-a-foreign-language

https://www.pimsleur.com/c/how-to-learn-a-foreign-language
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AI’s GPT-3.5-Turbo model, via REST API, was used as the conversational agent.

Moreover, the aim of Immersio is to provide a natural and believable language

learning process which should cultivate skills such as speaking, typing, listening,

and reading Japanese.

Immersio was constructed with various tools to facilitate learning, modularity,

and cohesiveness. The project utilizes a micro-service architecture by using tools

such as Docker9 for containerization and RabbitMQ10 for communication between

Docker containers. With this architecture it is possible to place artificial intelligent

models in Docker containers, which can easily be replaced in the case that a

better model or models are found. Immersio contains audio transcription and

audio generation with Whisper11 and CoquiTTS12 , respectively. Whisper and

CoquiTTS have base models that are capable of understanding Japanese and so

they are used in this project. For POS parsing, a spaCy13 model, through a Python

script, was placed in a Docker container. Because spaCy’s base model contains

the ability to understand Japanese, it was unnecessary to retrain spaCy’s models.

For translation and grammar correction of Japanese, HuggingFace transformer

models14 were placed in containers as well. It is important to note that the Hugging

Face transformer models that were used are pre-trained and are available as a

Python PIP package. Therefore, Immersio did not require additional training to

these models. Specifically, the Hugging Face translation model that was used is

opus-mt-ja-en15, which is a translation model that translates Japanese text and

transforms it into English. The model was developed by the Language Technology
9https://www.docker.com/

10https://www.rabbitmq.com/
11https://github.com/openai/whisper
12https://github.com/coqui-ai/TTS
13https://spacy.io/
14https://huggingface.co/
15https://huggingface.co/Helsinki-NLP/opus-mt-ja-en

https://www.docker.com/
https://www.rabbitmq.com/
https://github.com/openai/whisper
https://github.com/coqui-ai/TTS
https://spacy.io/
https://huggingface.co/
https://huggingface.co/Helsinki-NLP/opus-mt-ja-en
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Group at the University of Helsinki16. Because it is possible for a Japanese-to-

English translation model to output ungrammatical English, we therefore pipelined

the output of the translation model into an English grammar model. The English

grammar model takes ungrammatical English as input and returns grammatical

English as an output. Ungrammatical English denotes English text which does

not follow grammar rules in English. For instance, if a piece of text is written

as, ”My name is Sarah and lives in London,” it is considered ungrammatical

English text. To make this text grammatical we passed it in a grammar model

in which the output returned is, ”My name is Sarah and I live in London.” The

Hugging Face model that was used to achieve this is coedit-large17 , maintained

by Grammarly18. In order to cohesively bind the services together, Django19 was

employed to communicate with the micro-services using RabbitMQ with remote

procedure calls (RPCs) and the frontend with REST API which was designed using

React20. Because the conversational agent and the spaced repetition system are

crucial in the language learning application, we placed OpenAI’s21 GPT-3.5-Turbo

API in the same container as the Django backend along with LangChain22 and

PostgreSQL23 to remember conversations.

There are also various instruments employed by these tools to make develop-

ment more secure, fast, scalable, and reliable. For instance, Django uses Django
16https://huggingface.co/Helsinki-NLP
17https://huggingface.co/grammarly/coedit-large
18https://huggingface.co/grammarly
19https://www.djangoproject.com/
20https://react.dev/
21https://openai.com/
22https://www.langchain.com/
23https://www.postgresql.org/

https://huggingface.co/Helsinki-NLP
https://huggingface.co/grammarly/coedit-large
https://huggingface.co/grammarly
https://www.djangoproject.com/
https://react.dev/
https://openai.com/
https://www.langchain.com/
https://www.postgresql.org/
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Rest Framework (DRF)24 where React uses TailwindCSS25, Vite26, Vitest27, Mock

Service Worker (MSV)28. We also used Figma29 for constructing the user interface

on the frontend. Moreover, we also employed continuous integration with Github

Actions30. When a user chooses to save recorded audio files, these files are saved

locally with IndexedDB31 in a user’s browser rather than expend server resources

in the backend. Once all of the tools were ready to be used, Docker Compose32

was used to start all the services at once. Finally, we deployed the application on

Railway33.

Immersio includes two main sections consisting of the chat page and the reviews

page. The goal of the chat page is to emulate a dynamic and somewhat realistic

conversation between a human and another human. The difference is that a given

registered end user can be set up to chat with an artificial intelligent conversational

agent which is capable of speech replies, speech comprehension, text replies, text

comprehension, memorization of previous messages in the conversation, parsing

POS, and dictionary lookup.

Whenever a user desires to save a message from a conversation they have

had with their artificial intelligent language exchange partner, they can easily

press a button to send the message, or some portion of it, to review. Reviews

are Immersio’s implementation of a spaced repetition system. The reviews are

designed for a user to study content such as sentences, individual words, and
24https://www.django-rest-framework.org/
25https://tailwindcss.com/
26https://vitejs.dev/
27https://vitest.dev/
28https://mswjs.io/
29https://www.figma.com/
30https://github.com/features/actions
31https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB API/Using IndexedDB
32https://docs.docker.com/compose/
33https://railway.app/

https://www.django-rest-framework.org/
https://tailwindcss.com/
https://vitejs.dev/
https://vitest.dev/
https://mswjs.io/
https://www.figma.com/
https://github.com/features/actions
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://docs.docker.com/compose/
https://railway.app/
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even POS. The reviews are completed through the review page which contains

lists of various review items that a user has added to their review page. Upon

selecting one of these lists on the review page the user can then select whether

or not individual items show up during their review session with check-boxes

in a table. A user also has the chance to add their items to a custom review list,

reset what is known as a Spaced Repetition System (SRS) level, which is simply a

metric to determine how often a review item is reviewed, or simply delete the item

from their reviews. Moreover, a user is able to delete review items but will have to

confirm deletion via a confirmation modal34. A modal is a frontend development

term for a UI component that displays over the current page but does not fully

cover the contents underneath it. A modal is useful because it assures a user that

they have not left the page they were on. In Immersio’s case, the modal verifies if

the user actually wants to delete a review item by asking them to press a confirm

button. Finally, a user is able to review these items with due care by pressing the

start review button, which generates a review queue that utilizes a priority queue

in JavaScript and React hooks.

Once a review session is started a user goes through various stages that can be

represented in a finite state automata, as shown in Figure 1.1, which consists of

translation of the review item, the context of a review item along with whether or

not a user has answered correctly, and a review report. During this process, the

user is graded against artificial intelligent models, and finally the review report

determines how well a user has done during asking to translate the review items.

The benefit of this finite state automata is that it can be expanded to accommodate

a mode that only allows speaking in the user’s target language or it could be
34A modal is a frontend and UI term that resembles a popup that prompts a user to take an

action.
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adapted to include that the user must select from a list of correct options that

would also be generated by an artificial intelligent model in the backend.

Figure 1.1: Finite state automata of the review process a user would take
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1.3 Objectives

The main objective of Immersio is to deliver an immersive Japanese language

learning web application using spaced-repetition, active recall, and an artificial

intelligent conversational chat agent both in voice and text. For this reason

Immersio is broken up into sub-objectives which are to:

1. Create the review section which includes:

• A spaced-repetition system (SRS) and active-recall system which tracks

a user’s progress

• A review landing page that includes:

– The ability for a user to review all of their review items. A review

item is a word, POS, or sentence that is prompted to translate by a

user during a review session. A review session is simply an allotted

portion of time in which a user reviews a subset of all of their review

items

– The ability for a user to review all of their sentence review items

– The ability for a user to review all of their word review items

• A review queue selection page which allows:

– A user to add review items to a review session’s review queue. A

review queue is a data structure that manages the order of review

items and determines the next review item that is displayed during

a review session

– A user to see how many review items are available

– A user to add the review items to a custom review item list
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– A user to reset the SRS level of a review item. A SRS level is a value

that determines the review frequency of a review item. A SRS level

ideally measures how much a user memorized a review item

– A user to delete a review item

– A user to delete their entire review queue item list

• A prompt for the user to translate a review item that:

– Checks the user’s response against an artificial intelligent capable

of comparing a user’s translation to the the actual translation

– Provides the ability to both type and speak the answer

• A conversation context panel to:

– Show up after a user has attempted to translate the prompt

– Provide whether or not the answer is incorrect

– Provide the differences that were made in the answer they made

compared to the artificial intelligent agent’s translation it graded

against

– Provide the option for the user to assert that they were correct or

incorrect in their translation

– Provide the option for a user to undo their translated answer with

an undo button

– Have an option to toggle showing the corrections made by the

artificial intelligent agent

– Provide a continue to next prompt button

2. Create the chat page which allows a user to converse with an artificial

intelligent agent, which has various features including:



11

• Asserting that a user must speak in their target language

• Sending a message in the user’s target language that generates a re-

sponse in the user’s target language

• Generating audio via CoquiTTS’s Kokoro model that is trained on the

Kokoro dataset35 and storing the audio locally in IndexedDB to save

sever resources

• Ability to send audio messages to the backend that Whisper converts

into text and the functionality for IndexedDB to save the audio locally

to preserve server resources

• The ability to translate the messages on the interface

• POS high-lighting which includes:

– Dictionary lookup of words or POS

– Color coding to make it easier to understand what the purpose of

the item is for

– The ability to add the item to the reviews as a word

3. A dashboard page which shows a high-level overview of the information of

a user

1.4 Limitations

Due to time, linguistic skills, hardware, and monetary constraints, this project has

the following limitations:
35https://www.kaggle.com/datasets/kaiida/kokoro-speech-dataset-v11-small

https://www.kaggle.com/datasets/kaiida/kokoro-speech-dataset-v11-small
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• The quality of the the audio generated by CoquiTTS, a deep learning toolkit

for Text-to-Speech (TTS) synthesis36, is limited by the default model which is

trained on the Kokoro Speech Dataset37. Additionally, the CoquiTTS toolkit

may have limitations in itself or its dependencies such as Cutlet38. Cutlet is a

tool to convert Japanese text into romanized text called Romaji. CoquiTTS

uses romanized text produced from Cutlet in order for its Kokoro model to

synthesize Japanese words into audio. Because the romanized counterparts

of Japanese may not fully represent the native Japanese pronunciation, the

audio generated by CoquiTTS may not speak with a native Japanese accent.

• There was only one native Japanese speaker who evaluated Immersio. There-

fore, he evaluated all the Japanese grammar, translation, pronunciation,

generation, and correction.

• Because we did not have anyone on our immediate team to validate the

accuracy of a grammar or translation model in Japanese we used community

translation models and grammar models from Hugging Face and did not of

train them further.

1.5 Delimitations

This project is delimited in the following ways:

• We did not train a conversational language model as many options already

exist to execute this functionality with high precision such as OpenAI’s GPT
36https://github.com/coqui-ai/TTS
37https://www.kaggle.com/datasets/kaiida/kokoro-speech-dataset-v11-small
38https://github.com/polm/cutlet

https://github.com/coqui-ai/TTS
https://www.kaggle.com/datasets/kaiida/kokoro-speech-dataset-v11-small
https://github.com/polm/cutlet
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models39 and LangChain40.

• We did not train a Speech-to-Text (STT) model as Whisper41 was sufficient for

our needs. Speech-to-Text (STT) is the process of converting human speech

into human readable text. Whisper leads Speech-to-Text technology on the

market.

• Because spaCy has out-of-the-box support for POS parsing of various lan-

guages – including Japanese – we did not train spaCy’s predefined models.

• The Hugging Face models, opus-mt-ja-en and coedit-large, was not mod-

ified or trained in any way as these models were sufficient for the project.

1.6 Overview

This document is organized as follows:

• Chapter 2 provides the theoretical framework and state of the art

• Chapter 3 outlines the methodology for the construction of Immersio

• Chapter 4 delineates the procedures that were involved in the evaluation of

Immersio

• Chapter 5 presents the finalized application and the evaluation results

• Chapter 6 summarizes the project outcomes and the future work

39https://platform.openai.com/docs/models
40https://python.langchain.com/docs/get started/introduction
41https://github.com/openai/whisper

https://platform.openai.com/docs/models
https://python.langchain.com/docs/get_started/introduction
https://github.com/openai/whisper
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Chapter 2

Background

This chapter presents the theoretical framework and state of the art. First, the

theoretical framework section delves into concepts and paradigms used in the

creation of a language learning application. Then the state of the art examines the

tools that have applied the concepts shown in the theoretical framework.

2.1 Theoretical Framework

This section explores the techniques used in language learning applications as well

as inspects the brief history in contriving such techniques. It covers a range of

topics such as algorithms, machine learning, linguistic procedures, and data used

in language learning tools. Figure 2.1 summarizes these topics into what makes a

language learning application.

2.1.1 Pedagogy

Pedagogy is the method and practice of teaching a particular subject. In Immersio’s

case, pedagogy refers to methods and techniques that involve efficient memoriza-
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Figure 2.1: Concept map of topics explored in the theoretical framework

tion and language learning techniques. One concept that is pertinent to language

learning applications is the concept known as the forgetting curve. The forgetting

curve is an observation of human retention of information plotted over time as seen

in Figure 2.2. The curve at the beginning of learning a specific piece of information

is where time can be expressed as t = 0. At t = 0, the user has retained all of the

information he or she already has. Thought of another way, the user has not lost

or forgotten any information that they had just learned. However, as time goes

on the amount of information retained is reduced logarithmically – in which a

steep drop of loss of information is expected to occur before the curve smooths

out into a gradual decline. This means that the slope of |t = n| > |t = n + 1| can

be formulated into a logarithmic function such that b =
100k

(log t)c + k
. Where k and
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c are constants and can be represented as k = 1.84, c = 1.25.

The forgetting curve and its logarithmic function is credited to German psy-

chologist Hermann Ebbinghaus who had observed the phenomenon in 1880 [3].

Despite the time period of creation, Ebbinghaus’ work has continued to reinforce

the spaced repetition methodology as well as conceived replicated studies which

exhibit similar results [3].

Figure 2.2: Ebbinghaus’ Forgetting Curve [1]

Without the work of Ebbinghaus, works in spaced repetition may not have

been possible. Spaced repetition is defined as a method of reviewing information

at systematic intervals [4]. C.A. Mace was a British psychologist who expanded

upon the works of Ebbinghaus. Specifically, he proposed whenever learning new

information, ”there is grinding work to do [... through] concentrated effort” and

”[after] every mnemonic device has been exploited there remains much that can be

acquired only by drudgery and systematic repetition” [5]. Mace provides a method

for ”learning a foreign language” by ”parceling the material to be memorized into

units which can be tabulated on postcards” and then memorized and ”spaced in

gradually increasing intervals, roughly intervals of one day, two days, four days,

eight days, and so on” [5].
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When overlaying a spaced repetition system over Ebbinghaus’ forgetting curve

a given user is shown to forget less information over time compared to without

using a spaced repetition system as seen in Figure 2.3. For example, if a user

decides to review information after some time, Ebbinghaus’ forgetting curve tends

to flatten or the logarithmic curve becomes less steep. Furthermore, if a user

reviews a second time, the curve continues to become less steep as well as when

the user does sequential reviews of the given information.

Figure 2.3: Ebbinghaus’ Forgetting Curve with Spaced Repetition [1]

C.A. Mace explains that reviewing information can take place in two forms.

The first of which is known as passive repetition which can constitute a user re-

reading a list of items when reviewing. The second is known as active repetition or

active recall in which a user may recall an ”alternate” but synonymous meaning

of the information being reviewed [5]. This information is vital to a language

learning application. However, many language learning applications only use

flashcards which do not enforce active recall effectively. This is especially an

issue in applications that do not harness the power of artificial intelligence, which

possesses the ability to detect whether a prompt is at least roughly equivalent
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to the answer stored – typically stored in the backend in a database. Instead

many solutions may fall into the fallacy of comparing a user’s answer in a spaced

repetition software directly to the stored answer in a database. If this occurs, the

user’s answer, despite being correct may be flagged as incorrect by the software.

For instance, if a user types in, ”Hello Earth” but the database has stored the correct

answer as ”Hello World” the user may be marked incorrect even if ”World” and

”Earth” can be used in the same context synonymously and still portray the same

meaning. This pitfall can be mitigated by employing artificial intelligence which

can interpret the meaning of words in context to check if they are synonymous

and deem a user’s answer to be correct if they are synonymous and incorrect if it

is not.

A concept that extends from spaced repetition is known as the Leitner System

which was developed by Sebastian Leitner [6]. Leitner proposed an implementation

for a spaced repetition system by including three elements: flashcards, boxes, and

review intervals. The boxes in his proposed implementation were mapped to a

particular review interval, or the time a flashcard was supposed to stay in the box

until the next review. Flashcards that have never been reviewed before would be

placed in the first box, which would have the shortest review interval. At this

point in time, the review interval lasts until a particular point in time in which the

flashcards would be taken out to be reviewed. The flashcards may be in the form of

questions with their associated answers. In such case, a review prompts a user to

associate the answer of the flashcard to the question of a particular flashcard. This

determines if the flashcard advances to a new box with a longer review interval,

remains in its current box with the same review interval, or if it is placed in a

previous box with a shorter review interval. Figure 2.4 provides an illustrated

example of an implementation using the Leitner System. This figure shows that
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new flashcards enter the box with the lowest review interval, designated in this

figure as ”1”. After some time these flashcards are reviewed. Specifically, they may

either be moved to the next box (”2” in this case) with a slightly higher review

interval or remain in the first box to await another review. If the user associates

the correct answer of a flashcard to the flashcard’s question, the card will either be

moved to a box with a slightly higher review interval, remain in the same box, or

be removed from the system entirely – depending on the algorithm and whether

or not the flashcard’s current box has the highest review interval. If the user does

not associate the answer of a flashcard to the flashcard’s question, the flashcard

will either be moved to the first box with the lowest review interval so that it is

encountered quickly as per Leitner’s implementation, moved back to a box with

a slightly lower review interval as implementations seen in traditional language

learning applications, or remain in its current box – depending on the algorithm

and whether or not flashcard’s current box has the lowest review interval.

Figure 2.4: An example of the Leitner System [1]

The Leitner System has given rise to multiple algorithms designed to work

in conjunction with the system as well as sparked research studies in fields of
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psychology and medical sciences. One such study aimed to enhance human

learning via spaced repetition by utilizing dynamic parameters rather than hard-

coded constants in rule-based heuristic algorithms [7]. It is in research such as this

that the Leitner system is valued for its exponential spacing which may be explicitly

cast using arbitrary formulae. In fact, the Leitner System not only implements

spaced repetition but it also accounts for Ebbinghaus’ forgetting curve by mapping

flashcards or review items to a particular review interval.

The Leitner System has also influenced the creation of multiple commercial

flashcard and language learning software, which have implemented their own

spaced repetition algorithms. For instance, SuperMemo has utilized spaced rep-

etition algorithms such as SM-0, SM-2, SM-8 and SM-18. The creation of these

algorithms is credited to Polish computer scientist Piotr A. Wozniak as proposed

in his master’s thesis [8]. Specifically, he presented the ”problem of forgetting”

and proposed his SuperMemo solution which consists of two restraints:

1. Intervals should be as long as possible to obtain the minimum frequency of

repetitions

2. Intervals must be short enough that knowledge is still remembered

The SM-2 algorithm was developed, was modified slightly, and utilized by the

Anki software [9]. As research in the field of spaced repetition and the Leitner

System had progressed, open-source algorithms such as the Free Spaced Repetition

Scheduler (FSRS) algorithm were made publicly available [10], [11]. The FSRS

algorithm can be installed as an add-on with the Anki1 software.

One method that integrates spaced repetition and the forgetting curve into

a language learning technique is known as the Pimsleur method. The Pimsleur
1https://apps.ankiweb.net/

https://apps.ankiweb.net/
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method was created by Paul Pimsleur, Ph.D. His work was instrumental for

theories of language learning as well as the creation of the language learning

application. Pimsleur is known for publishing books and papers based on learning

a foreign language [12] and psychological experiments on second language learning

[13]. Also, Pimsleur had taken interest in spaced repetition and Ebbinghaus’

forgetting curve which he applied the forgetting curve to short-term memory

[14]. He illustrates this with a language student who is taught the meaning of

a modern Greek word and its pronunciation. The student is then instructed to

recall the information a second later. At this point in time, Pimsleur claims that

the probability that the student will remember the word is ”approximately 100%.”

As time increases, in a matter of seconds, the probability of recalling the correct

response decreases drastically. For instance, if the student waits six seconds to

recall the meaning of the word that was taught, the student is more likely to forget

the meaning of the word at this point in time compared to if the student had only

waited one second to recall the word. Pimsleur expresses this concept in detail

by supposing that at six seconds the probability of recalling the correct response

is 35% – which is not likely to be recalled when prompted. Pimsleur claims that

when a student is prompted to recall the word at a point in time with a decent

probability of 60%, the teacher will remind the student of the correct answer. By

reminding the student of the correct answer, the probability of recalling the word

rises back to 100%. This point Pimsleur makes also relates to Pior Wozinak’s

SuperMemo solution in which, ”Intervals should be as long as possible to obtain

the minimum frequency of repetitions” [8]. By not relying on perfect probability of

remembering an item an efficient spaced repetition algorithm can be formulated.

Additionally, Pimsleur explored his philosophy of recognizing a good teacher.

He accomplished this by comparing two teachers who teach Japanese and Swahili
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[12]. The Japanese teacher, on the first day, had only described the sounds of

Japanese, the theory, and the possible syllables. However, on the first day for the

Swahili teacher, the teacher prompted the students to stand and sit in Swahili. The

Swahili teacher emphasized practice over theory and understood that repetition is

key to learning a language. Pimsleur declared that ”[g]rammar is best learned by

using, not by talking about it.” Pimsleur therefore encouraged language learning

to be interactive, provide the students to think about responses to questions, and

to capitalize on repeated instructions by limiting usage to the target language. This

tenet is a driving force in this project.

2.1.2 Linguistics

Linguistics is the study of human languages and its structure, including mor-

phology, syntax, phonetics, and semantics. Linguistics is important to Immersio

because it determines how artificial intelligent models and other technologies can

produce and understand Japanese. In the context of linguistics, Part-of-Speech or

POS refers to a word, grammar point, or piece of text that has a particular function

in a sentence. Specifically, POS may be a noun, pronoun, verb, adjective, adverb,

conjunction, interjection, preposition or determiner. Because POS determines a

function in a sentence or phrase, it becomes useful for both AI tools such as natural

language processing or machine learning and humans to be able to understand its

purpose in a sentence. POS is valuable for language learning tools and applications

as shown in Indonesian POS tagging systems [15]. POS is also used in some dictio-

naries such as JMDict2. It is therefore vital to utilize tools and standards that take

advantage of POS parsing. With such tools it is possible to create on-demand POS

parsing on dynamically generated text from a conversational agent. This method
2https://www.edrdg.org/jmdict/j jmdict.html

https://www.edrdg.org/jmdict/j_jmdict.html
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is expected to become superior than traditional usage of POS where POS data is

stored statically in a dictionary, such as the Contemporary Chinese Dictionary

(Xian Dai Han Yu Ci Dian) [16] [17] or a database such as JMDict [18]. Even when

stored statically in a database, it is typical for language learning applications to

not display POS in a concise or efficient manner. For instance, many applications

may only allow an end-user to look up words in a dictionary and provide whether

a word is a noun, verb, or a few other common POS types. However, POS types

can be broken up into subtypes. For instance, a noun can be broken up into a

person, place, thing, animal, quality, ideology, or an action. Additionally, a verb

can be split into an auxiliary or linking verb. This phenomenon is known as POS

subtypes. However, traditional or current language learning applications do not

appear to take advantage of on-demand POS generation or POS subtypes.

Like POS, translation has been considered heavily in the field of linguistics [19].

Translation can vary depending on the source and target language. Additionally,

translation can resolve to different meanings depending on the context. Parallel to

translation, grammar is regarded as a vital component in linguistics.

2.1.3 Data

In terms of data, one project has taken on the form of a refined dictionary known

as JMDict3. JMDict3 is an online electronic dictionary and project overseen by Jim

Breen [20] and managed by the Electronic Dictionary Research and Development

Group [21]. The main objective of JMDict3 project was to provide a multilingual

dictionary in the form of a lexical database [22]. JMdictDB3 contains various tables

which can be used to query words regarding their definitions, the sense or tense

of the word – such as if a word is used in passive or causative style, the POS if
3https://www.edrdg.org/jmdict/jjmdict.html

https://www.edrdg.org/jmdict/j_jmdict.html
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applicable, the word itself, and the Kana reading (Chinese characters, or Kanji, can

be mapped to a particular script such as Hiragana and Katakana where Hiragana

and Katakana make up what is known as Kana).

An exceptional language learning application would not be complete without

textual and audio data of both source and target languages4. On one hand, textual

data from both source and target languages are used to teach typing and reading

skills. On the other hand, audio data is used to teach speaking and listening skills

in a language learning application. For these reasons, it is important to store both

textual and audio data in a database.

There are two types of databases which are used in Immersio: PostgreSQL5 and

IndexedDB6. PostgreSQL5 was used to store textual data for a user and IndexedDB6

was used to store large audio files recorded by a user. PostgreSQL5 is a reputable,

open-source, SQL relational database. It is significant because it can be used with

Django’s7 object relational mapper (ORM). An ORM is a tool that abstracts user

interactions of a database by representing database relations as an object. This is

typically done through a class in a programming language such as Python. Using

this configuration allows easy interactions with PostgreSQL5. However, if a user

needs to store large files, such as audio data, PostgreSQL5 can quickly grow in

size and cause multiple problems. One problem is that accessing the database

can become slow. Another problem is that it can be expensive to contain large

files in a database. For these reasons, a solution that can be used in conjunction

with PostgreSQL needs to be used. This solution needs the ability to store large

files, also known as blob data. There are multiple solutions for this problem but
4A source language refers to a language that a language learner is learning from while a target

language refers to a language that a language learner is trying to learn.
5https://www.postgresql.org/
6https://developer.mozilla.org/en-US/docs/Web/API/IndexedDBAPI/UsingIndexedDB
7https://www.djangoproject.com/

https://www.postgresql.org/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://www.djangoproject.com/
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the one that was considered is IndexedDB6. IndexedDB6 is a database that stores

data in a client’s browser. By using IndexedDB6 to store audio data in a client’s

browser, privacy issues are eliminated as the audio data is not maintained on

a machine that the user does not own. Because the audio is stored in a client’s

browser, a user can delete their own recordings without having to make a REST

API request to the backend server which would otherwise incur network expenses

when attempting to access a large file. However, one potential issue that may

occur when using IndexedDB is that a user may accidentally delete their data.

This can occur if a user clears their browser cache which also removes IndexedDB

databases. Because audio data can be regenerated on Immersio, via CoquiTTS8,

it is not critical to ensure that audio data is preserved. However, this means that

important textual data that cannot easily be regenerated needs to be stored with

some perpetual solution. For this reason, all textual data is stored in PostgreSQL5

to retain efficiency and not incur data access expenses that would otherwise be

caused by storing large blob data.

2.1.4 Technology Used in Immersio

There are several AI models available both publicly and open source that yield

interest for a language learning application. Because GPT-3.5-Turbo9 is easily

accessible with an API and it can be configured with LangChain10 to act as a

conversational agent it was selected as the conversational agent in this project.

Also, we used two pre-trained Hugging Face models for translation and grammar

correction. For POS tagging capabilities spaCy11 was explored. For language de-
8https://github.com/coqui-ai/TTS
9https://platform.openai.com/docs/models

10https://www.langchain.com/
11https://spacy.io/

https://github.com/coqui-ai/TTS
https://platform.openai.com/docs/models
https://www.langchain.com/
https://spacy.io/
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tection CLD2
12 was used. For STT and TTS models capable of speech transcription

and speech generation we used Whisper13 and CoquiTTS14 respectively.

In order to support dynamic POS generation and POS subtypes various tools

and standards were created. One such standard is the Universal Dependencies

project, [23] which provides a set of Universal POS tags [24]. The standards

provided by the Universal Dependencies extend and categorize POS into seventeen

different categories. These categories can express POS in many if not most human

languages. Although the Universal Dependencies POS tags cannot cover all lexical

and grammatical properties of every language and therefore an additional standard

called Universal features [25] was utilized. The Universal features may account for

POS that represent numbers, have a particular tense or mood, or much more.

With standards such as the Universal POS tags and the Universal features

defined, various tools utilizing this format, such as the Natural Language Toolkit

(NLTK)15 and spaCy16, have emerged. Such tools have been traditionally used to

parse large amounts of corpora but appear to find little usage in language learning

applications. However, both of these tools are utilized in Python and are equipped

to provide an array of applications for research and industrial usage.

spaCy17 is a modern NLP tool that is capable of tokenization and tagging

text into POS. spaCy17, compared to NLTK18, is a newer tool with early versions

released as early as 2015
19. spaCy17 offers high-level management, training of

models, and provides the most highly efficient NLP algorithm. spaCy17 also
12https://github.com/CLD2Owners/cld2

13https://github.com/openai/whisper
14https://docs.coqui.ai/en/latest/implementing a new language frontend.html
15https://www.nltk.org/
16https://spacy.io/
17https://spacy.io/
18https://www.nltk.org/howto.html
19https://explosion.ai/blog/introducing-spacy

https://github.com/CLD2Owners/cld2
https://github.com/openai/whisper
https://docs.coqui.ai/en/latest/implementing_a_new_language_frontend.html
https://www.nltk.org/
https://spacy.io/
https://spacy.io/
https://www.nltk.org/howto.html
https://explosion.ai/blog/introducing-spacy
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utilizes the Universal POS tags and Universal features defined by the Universal

Dependencies.

In order to accommodate linguistical principles concerning translation and

grammar correction, two Hugging Face pretrained models were considered. One

suitable Japanese-to-English translation model from Hugging Face that was consid-

ered is Opus-MT-JA-EN20 by Helsinki-NLP. An English grammar correction model

that was used is Coedit-Large21 by Grammarly.

Text-To-Speech (TTS) is the process of sending textual data through a TTS

pipeline and generating humanlike speech – either through creating an audio file

or through an audio stream. TTS typically works through a large language model

(LLM), which are AI models trained on vast amounts of data such as publicly

available online text or corpora. TTS LLMs typically consist of a voice synthesizer,

such as eSpeak22, which is responsible for generating the speech with a given

set of linguistic sequences [26]. Additionally, a TTS LLM typically consists of a

phonemizer – especially with support for various human languages. A phonemizer

takes the text of a certain language as input and returns phonemes and graphemes

as output23. A phoneme represents a distinct sound in a human language or

human alphabet. A grapheme is the smallest meaningful contrastive unit in a

writing system. An English phonemizer can take English text and return a phonetic

representation. One phonetic representation that a phonemizer can output is the

IPA format by the International Phonetic Association.

Another tool that is utilized in TTS LLMs is called a morphological analyzer.

”Morphological analysis may be defined as the process of obtaining grammatical
20https://huggingface.co/Helsinki-NLP/opus-mt-ja-en
21https://huggingface.co/grammarly/coedit-large
22https://espeak.sourceforge.net/
23https://docs.coqui.ai/en/latest/implementing a new language frontend.html

https://huggingface.co/Helsinki-NLP/opus-mt-ja-en
https://huggingface.co/grammarly/coedit-large
https://espeak.sourceforge.net/
https://docs.coqui.ai/en/latest/implementing_a_new_language_frontend.html
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information from tokens, given their suffix information.”24. One such tool that

does this is MeCab25. MeCab25 is a POS and morphological analyzer which is

capable of parsing Japanese text into POS. For instance, MeCab25 can determine

nouns, auxiliary verbs, punctuation, and much more26.

Another tool that is utilized in TTS LLMs are Romanizers. The job of a

Romanizer is to convert non-Roman or non-Latin characters into a form that can

be read and written in Roman or Latin characters. For example, Nepali, Chinese,

Japanese, and Korean words (and to some degree characters) can be represented

with Roman characters used in languages such as English (”a”, ”b”, ”...”, up to

”z”). One such Japanese Romanizer used by TTS LLMs is called Cutlet27 which

converts Japanese text to a romanized form known as Romaji.

All of these tools are typically used within a TTS LLM or TTS library such as

CoquiTTS28. CoquiTTS28 is a TTS library which offers various tools, pretrained

models, and ”utilities for dataset analysis and curation” under the MPL-2.0 li-

cense29. Like most machine learning tools CoquiTTS28 is written and developed in

Python30. CoquiTTS28 offers fine-grain control to engineers by providing tools to

help models understand various human languages.

CoquiTTS28 does an excellent job at producing Japanese speech from provided

Japanese text. However, Immersio also needs to support converting Japanese

speech to Japanese text. This is done through what is known as Speech-To-Text

(STT). STT is the procedure of transforming human speech, usually in the form of

an audio file or audio stream, into human readable text. Like TTS, STT typically
24https://www.oreilly.com/library/view/natural-language-processing/9781787285101/ch22s05.html
25https://github.com/taku910/mecab
26https://taku910.github.io/mecab/
27https://github.com/polm/cutlet
28https://github.com/coqui-ai/TTS
29https://github.com/coqui-ai/TTS
30https://www.python.org/

https://www.oreilly.com/library/view/natural-language-processing/9781787285101/ch22s05.html
https://github.com/taku910/mecab
https://taku910.github.io/mecab/
https://github.com/polm/cutlet
https://github.com/coqui-ai/TTS
https://github.com/coqui-ai/TTS
https://www.python.org/


30

consists of an LLM and a pipeline of data transformation where Python data

libraries such as pandas31 and or NumPy32 are used to handle various datatypes

– especially those concerning audio. These underlying tools provide the ability

to take an audio clip and convert it into a mel spectrogram, pass it through a

convolutional neural network, a transformer pipeline consisting of encoding and

decoding, and token prediction. This type of model is known as a sequence-to-

sequence (seq2seq) model [27]. There are various open-source tools to create a

STT LLM such as CoquiSTT33 and Whisper34. However, CoquiSTT33 is no longer

actively maintained in favor of more popular and potentially more robust STT

models such as Whisper34.

Whisper34 is a STT tool and Python35 library developed and maintained from

OpenAI36, which is registered under the MIT license34. Whisper34 is capable of

transforming many human languages recorded in the form of audio files into text

of a desired language. For instance, the audio file could be a sentence spoken in

Spanish but the output could be set to return English text [27]. This is because

Whisper is trained on at least 680,000 hours via multitask training. This effectively

has made Whisper34 multi-lingual and is very appealing for language learning

applications and tools. Additionally, background noise and interference should

not generate garbled textual data and instead will return nothing [27].

Containerization is the process of breaking an application into smaller pieces

which are decoupled but can still communicate with each other [28]. Historically,

an application’s architecture would be monolithic and would not be able to scale
31https://pandas.pydata.org/
32https://numpy.org/
33https://github.com/coqui-ai/STT
34https://github.com/openai/whisper
35https://www.python.org/
36https://openai.com/

https://pandas.pydata.org/
https://numpy.org/
https://github.com/coqui-ai/STT
https://github.com/openai/whisper
https://www.python.org/
https://openai.com/
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efficiently as the application updated its requirements. This traditional architecture

has often led to the rigidity of an application where it is difficult to make changes

without breaking another piece of dependent code. However, as time progressed,

the concept of micro-services has mitigated the effects of a traditional monolithic

architecture by reducing coupling, allowing developers to more safely deprecate

functionality, and improving scalability. This new micro-service architecture has

led to the advent of containerization software such as Docker37 and Podman38.

While both of these technologies utilize containerization, Docker37 appears to have

a lot of popularity and has been on the market longer than Podman38 [29].

With volatile changes in code and the fast-paced advances in AI technology, it

may be favorable to contain functionality or AI models as a service. By placing code

or AI models in a container a piece of depreciating technology can be removed

without too much rework so long as there is a clear interface or API that all

the services are to follow. For instance, before Microsoft’s GODEL39 model – a

conversational agent – was DialoGPT40 which preceded it. However, DialoGPT40

was superseded by GODEL40 as GODEL39 had become more performant than

DialoGPT [30]. In a situation where a developer decided, first, to utilize the

DialoGPT40 model but found that it would be better to replace it with GODEL39

then the developer could remove the container containing DialoGPT40 and replace

it with a container containing GODEL39. The developer may have to update or

create new lines of code but the process may not be as arduous as updating this

functionality in a traditional monolithic application.

A message broker is a tool that allows services or micro-services to commu-
37https://www.docker.com/
38https://podman.io/
39https://huggingface.co/microsoft/GODELv1 1largeseq2seq
40https://github.com/microsoft/DialoGPT

https://www.docker.com/
https://podman.io/
https://huggingface.co/microsoft/GODEL-v1_1-large-seq2seq
https://github.com/microsoft/DialoGPT
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nicate information with each other [31]. Typically a message broker consists of

at least two pieces: a consumer (or subscriber) and a producer (or publisher).

This paradigm is what is known as the publish-subscribe (pub-sub) pattern. A

producer (or publisher) would send a message to an exchange (or topic) in which

the message gets sent to a particular queue (or directly to the publisher in some

architectures) in which is consumed by a consumer. What makes communication of

a message broker unique is that messages of data can be handled asynchronously.

This is to say that clients do not have to wait for a response from a server. More-

over, a message broker allows undelivered messages to be stored on disk when

the message broker or a service goes offline. A message broker may have its

protocol such as AMPQ41 or it may implement its own such as gRPC. When paired

with containerization tools such as Docker37, message brokers can decouple a

tightly-coupled architecture.

One of the most popular message brokers on the market is RabbitMQ42 which

employs the publish-subscribe pattern. RabbitMQ42 has what is known as a

publisher which sends a message to an exchange within an AMQP broker. The

exchange looks at the message label and determines which queue the message

should be sent to. Finally, a consumer observes a queue with a particular label and

consumes messages from it until the queue is empty or until the consumer goes

offline.

2.2 State of the Art

This section discusses the current implementations on the language learning

application market. Within this section we explore the usage of the Leitner
41https://www.amqp.org/
42https://www.rabbitmq.com/

https://www.amqp.org/
https://www.rabbitmq.com/
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system and other SRS tools. Additionally, the utilization of artificial intelligence in

language learning applications are investigated. Furthermore, common techniques

used by these applications are explained. Finally, we reveal the limitations of these

applications and what could be improved.

2.2.1 Anki

Anki43 is a free and open-source flashcard system that integrates spaced repetition

and the Leitner system. Anki employs a derivative algorithm based on the SM-2

algorithm [32]. However, other algorithms can be utilized instead such as the FSRS

algorithm. Anki comes from the Japanese word for memorization (”暗記”). The

way Anki works is that a user can create a deck in which they place cards in. Cards

can be made within the Anki software or simply imported from another source –

typically as file in the SQLite format. A card usually contains a front and a back

side in which information such as text, images, and even audio can be placed on

both sides. Once a deck full of cards is created a user may review the deck in

which a review session starts. During the review session, a user is presented with

one card at a time which only shows one side of the card. The user must attempt

to actively recall how the information on the side they are presented relates to the

information of the side not presented. This is purely a manual cognitive process.

The user may choose to flip the card over revealing both sides of the card (so long

as the setting to show both sides is enabled). Additionally, the user is prompted

to declare how well they recalled the item with several options: ”Again”, ”Hard”,

”Good”, and ”Easy”. Each option determines when the item will be reviewed

again where choosing ”Again” shows the card to the user sooner than if they chose

”Easy”. The interface for this is illustrated in Figure 2.5. Once an option is selected
43https://apps.ankiweb.net/

https://apps.ankiweb.net/
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the user repeats the process until all items in the deck are reviewed and the items

that need to be reviewed again are reviewed until the user selects an option to

review it at a later time. This process can be summarized by the diagram of the

Leitner system in Figure 2.4.

Figure 2.5: The interface as seen in Anki

Anki is a very versatile tool however it comes with several limitations and

disadvantages in terms of a language learning application. As Anki is not explicitly

a language learning application, Anki does not have native support for dictionary

lookup with dictionaries such as JMDict. This can slow the process of both creating

and reviewing flashcards. For instance, a user must manually look up words in

a reputable dictionary to map their source and target language, then they may

manually place their source and target language on the front and back of an Anki

card respectively, and finally, they would review the items. Although, if a user

would like to look up a definition of a particular word of sentence in the review

item then they must look it up manually. A feature to hover or click on a word

of the sentence would be very beneficial and efficient for a user during reviews.



35

Another limitation of Anki is that by default Anki utilizes the SM-2 algorithm

although there are algorithms that improve the efficiency of spaced repetition such

as the the SM-18 algorithm utilized by SuperMemo. Yet another disadvantage of

Anki is that there is no native feature for a conversational agent, any AI tool, or

machine learning to assist in making review information dynamic. Such a tool can

be quite valuable for organic encounters found when engaging in a foreign target

language. Finally, Anki does not have POS highlighting, POS subtypes, or POS

lookup for individual words unless a user ”hardcodes” the information into the

flashcards via HTML and CSS.

2.2.2 HouHouSRS

HouHouSRS44 is a free and open source Japanese dictionary that integrates spaced

repetition with the JMDict dictionary. It is programmed in C# using Windows Pre-

sentation Foundation (WPF) for the user interface with a Model-View-ViewModel

(MVVM) architectural pattern. HouHouSRS allows the user to search for a vocab-

ulary item or a Chinese character – known as kanji – formulated by radicals, or

pieces of a Chinese character. After searching for a particular word, a user can

see the vocabulary meaning, its rarity, its rating on the JLPT45, its reading, and

its definition. The user can also choose to add the search item or items to their

reviews which shows up as an item in the SRS tab. The dictionary interface of

HouHouSRS can be seen in Figure 2.6.

Once an item is added to a user’s reviews a user may click the SRS tab in

which the user can iterate over all of the reviews via a Leitner system just as

with Anki. Different from Anki, however, HouHouSRS prompts the user to user
44https://github.com/Doublevil/Houhou-SRS
45https://www.jlpt.jp/e/

https://github.com/Doublevil/Houhou-SRS
https://www.jlpt.jp/e/
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Figure 2.6: The dictionary lookup as seen in HouHouSRS

to type both the meaning and the reading of an item. This is a more powerful

form of active recall in that a user must physically and actively type an answer

rather than conceptually visualize one. Once the user answers the question one

of two interfaces will be shown to the user depending on whether the user was

correct or not. The first interface shows the typed answer highlighted in green

if the user was correct. Additionally, two other options exist on this interface

such as ”Ignore answer” and ”Edit this item”. Selecting ”Ignore answer” skips

the card and shuffles it back into the deck. Pressing ”Edit this item” allows the

user to manually adjust review item criteria such as the SRS level, add notes,

and much more. The second interface appears when a user answers the question

incorrectly and displays the user’s typed answer highlighted in red. This second

interface will include the ”Ignore answer” and ”Edit this item” buttons with the

same functionality as the first interface but also adds an additional option which

is either, ”Add to readings” or ”Add to meanings”. The ”Add to readings” option,

which only appears if the review item prompted the user for the item reading,



37

when selected, adds whatever the user typed as an accepted answer, marks their

answer as correct, and goes to the next review item in the queue. The ”Add to

meanings” option provides a similar function with the only difference being that

the review item to be answered prompted the user for a meaning instead. The

interface in which a user answers a reading item incorrectly can be seen in Figure

2.7.

HouHouSRS is an incredible software inspired by Anki and WaniKani (a tool

we explored later) which allows a user to look up an item in a dictionary, review the

item via a spaced repetition system, and understand both readings and meaning

of a word through a powerful form of active recall. However, HouHouSRS is not

without its limitations. One such limitation is that HouHouSRS is not a cross-

platform tool as it is programmed in WPF which is only supported on Windows

machines. Another limitation is that HouHouSRS does not employ artifically

intelligent tools such as a conversational agent.

Figure 2.7: The spaced repetition feature as seen in HouHouSRS
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2.2.3 WaniKani

WaniKani46 is a spaced repetition tool inspired by Anki and developed by Tofugu

LLC which allows a user to review the most common characters, character radicals,

and vocabulary in Japanese. WaniKani utilizes the Leitner system by having

various SRS levels. There are 5 ”boxes” in WaniKani’s Leitner system which include

”Apprentice”, ”Guru”, ”Master”, ”Enlightened”, and ”Burned”. ”Apprentice” is

the first box a review item will enter and ”Burned” is the box a review item can

enter. A review item is said to be ”Burned” when a user understands a review item

and no longer needs to review the item. Each of these boxes or SRS levels each

have their review intervals calculated by a formula 47. Whenever a user answers

an item correctly the user may advance to the next SRS level. However, if the

user answers incorrectly a formula is used to determine how many SRS levels to

decrement a review item. The formula can be expressed as: n = c − (a ∗ p) Where

n represents the new SRS level, c denotes the current SRS level, a holds the value of

the incorrect adjustment count, and a constant, p, which is the SRS penalty factor.

The penalty factor, p, is 2 if the SRS level is at 5 or above – otherwise, it is 1.

With a provided SRS algorithm to determine what SRS level a review item

is on, another component is needed to determine the review interval, or the

time spent waiting for the next time the review item is reviewed. In addition to

the five boxes discussed previously, there are sub-boxes which allow fine grain

control over review intervals. For instance, ”Apprentice” is sub-categorized into

”Apprentice 1”, ”Apprentice 2”, ”Apprentice 3”, and ”Apprentice 4” while ”Guru”

is sub-categorized into ”Guru 1” and ”Guru 2”. The rest of the boxes are not

sub-categorized. With this system in place, a review item at ”Apprentice 1”,
46https://www.wanikani.com/
47https://knowledge.wanikani.com/wanikani/srs-stages/

https://www.wanikani.com/
https://knowledge.wanikani.com/wanikani/srs-stages/
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for example, would wait 4 hours until the next review, and a review item at

”Apprentice 2” would wait 8 hours, and so on. This algorithm is implemented in

what is known as ”Reviews” in WaniKani. During reviews, a user is prompted

to provide the meaning and reading of a review item. Figure 2.8 shows what the

reviews interface looks like.

Figure 2.8: The user interface of ”Reviews” within the WaniKani web application

WaniKani is a useful application which provides a directed approach to learning

Japanese although it is not without limitations. One of WaniKani’s limitations

is that there is no flexibility to add custom review items. This is to say that it is

impossible to add items a user wants to add willingly. Additionally this also means

that a dictionary cannot be used to look up an item and add it to a user’s reviews.

One other limitation of WaniKani is that it does not utilize artificial intelligent tools

such as a conversational agent. Additionally, definitions or meanings of review

items are hardcoded which means that determining whether a review item was

answered correctly or not would mean that a user would have to remember the

exact meaning or synonyms associated with the review item – even if the answer

they provided is a synonym or is a valid alternative.
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2.2.4 Bunpro

Bunpro48 is a Japanese language learning software which is based in Osaka, Japan.

Also like WaniKani, it is based on spaced repetition and the Leitner system. It also

contains five boxes which include ”Beginner”, ”Adept”, ”Seasoned”, ”Expert”,

and ”Master”. It also has the concept of ”Ghosts” which contains all review items

that are missed most frequently. One advantage Bunpro has over WaniKani is

that Bunpro adds the flexibility to add custom review items but still allows a user

to follow a curriculum. For instance, a user may choose to learn review items

that are rated at a higher difficulty or frequency before they learn an item of a

lower difficulty or frequency and vice-versa. We can therefore say that Bunpro

is difficulty agnostic and not opinionated on a particular curriculum. Another

difference from WaniKani is that it is designed to assist a Japanese learner with

grammar points – not vocabulary meanings or readings (although recently it has

some functionality to achieve this).

Reviews are done by prompting an answer from a user for a fill-in-the-blank

question. If the answer to the grammar point is correct, the user can continue

to the next item in the review queue or undo their answer and try again (such a

functionality does not exist in WaniKani). If the answer is correct and the item is

not a ”Ghost”, the item will not be reshuffled in the review queue. A ”Ghost” is

a review item that is commonly answered incorrectly during a review session. If

the user’s answer was incorrect, they do not choose to undo, and continues, the

user will be reshuffled in the review queue to be reviewed again during the same

review session. Figure 2.9 encapsulates the functionality of the Bunrpo reviews

interface.
48https://bunpro.jp/

https://bunpro.jp/
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Figure 2.9: The user interface of Bunpro reviews where the user had answered
incorrectly

Bunpro is an exciting grammar language learning application for Japanese with

several advantages over the previous examples explored in Section 2.2. However,

Bunpro also has limitations. One of these limitations is that Bunpro, like WaniKani,

has hardcoded examples and POS for each of its grammar points. This means

that an administrator would have to add these items manually. A solution to this

problem is to add generated examples and POS on demand with tools such as

a conversational agent and spaCy. One other disadvantage of Bunpro is that it

is designed specifically for grammar that is added manually. One final pitfall

that is found within Bunpro is the lack of artificial intelligent tools such as a

conversational agent or tools to assist with grading reviews.

2.2.5 Pimsleur

Pimsleur49 is a language learning application that employs Paul Pimsleur’s mem-

ory schedule technique, spaced repetition and active recall, and audio lessons.

This application is available as a mobile application as well as a web application50.
49https://www.pimsleur.com/
50https://www.pimsleur.com/

https://www.pimsleur.com/
https://www.pimsleur.com/
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Pimsleur lessons are designed to be done every day, not skipped, and where

the language learner is actively repeating what is spoken to them (shadowing).

A narrator guides the language learner through scenarios and prompts them to

repeat after the native actor of a target language. For this reason, Pimsleur transfers

memory from short-term memory to long term memory. Unlike other language

learning applications, which typically assist a user with typing and reading, Pim-

sleur emphasizes language learning skills such as speaking and listening (although

there are also readings lessons).

Pimsleur is a brilliant language learning application that allows a user to rapidly

learn a language through consistent practice and spaced repetition. However, there

are some limitations to Pimsleur. In essence, the Pimsleur method spaces its

lessons into small 30 minute audio clips, which are designed to be completed once

per day. There are various challenges that come with how this method is currently

implemented in the official Pimsleur application:

• The application must have a team create each audio lesson manually

• An audio lesson must have a hired voice actor to narrate the lesson

• Each audio lesson must be reviewed by an expert in the the end-user’s target

language

• It is expensive to manage such a large team to generate the lessons

• The application is limited mainly to speaking and listening with few excep-

tions

However many of these challenges may be resolved by incorporating modern

artificial intelligent tools such as Whisper from OpenAI which can transcribe
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human speech-to-text (STT). Conversely, CoquiTTS provides the ability to tran-

scribe text-to-speech (TTS). Through the utilization of these tools, it is possible to

eliminate the need for hired voice actors, manual labor for review creation, and

possibly large expenses incurred from managing a large team. Both of these tools

are explained in section 2.1.

2.2.6 Univerbal (Quazel)

Quazel51 was the name of a multi-language learning application that is now known

as Univerbal52. It is a relatively new application for both web and mobile devices.

Univerbal utilizes AI by including a conversational agent a user can interact with

through a messaging interface. In order to access the messaging interface a user

must select one of many lessons which each come with a conversation topic. Each

topic is generated on-demand by purportedly using ChatGPT.

Once a user selects a lesson from the lessons page (see Figure 2.10), an AI tool

will generate a conversation relating to the lesson topic. The user is then greeted

with the messaging interface which allows a user to both type and speak to the

conversational agent – ostensibly with STT technology. The user may also translate

the messages and play the audio of the message with what appears to be TTS

technology. In fact, the user may translate each word individually in context. The

user may also choose to do tasks which are suggested topics a user can choose

to message the conversational agent about during the conversation. The user

may optionally speak about these tasks but it is not required to complete the

lesson. The user can also over over words to get a translation of a word in context.

Finally, when a user exchanges a few messages with the conversational agent, the
51https://www.quazel.com/
52https://www.univerbal.app/

https://www.quazel.com/
https://www.univerbal.app/


44

user may ask the conversational agent to act as a tutor to summarize in detail

the conversation as well as provide suggestions on how to use certain grammar

points and words. At this point, a user may choose to go over the words from

their conversations by reviewing them. However, Univerbal’s review feature is not

based on spaced repetition but it does prompt the user to answer fill-in-the-blank

questions. The messaging interface can be seen in Figure 2.11.

Figure 2.10: The lessons page as seen in Quazel (now Univerbal)

Figure 2.11: The messaging interface for a particular lesson on Quazel (now
Univerbal)

Univerbal is a useful language learning tool that utilizes a conversational agent

and AI. However, the tool is not without its limitations as a language learning
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application. Perhaps the greatest limitation of Univerbal is that reviews do not

implement spaced repetition. Instead, reviews are done arbitrarily by the user and

how well a user understands or remembers a review item is not implemented well.

Another limitation of Univerbal is that it allows a user to speak in any language

the user wants – even if the language is not the target language. Such a pitfall

inhibits language learning as discussed by Paul Pimsleur in his examples of what

make a good language teacher [12].

2.2.7 SuperMemo

SuperMemo53 is by far the most comprehensive language learning software. Su-

perMemo is a powerful language learning tool which employs AI tools and

conversational agents, power algorithms, such as the SM-18 algorithm, and spaced

repetition. Additionally, SuperMemo has years of experience by adding features

such as translation and a dictionary. Based on the work of Piotr A. Wozniak, Super-

Memo utilizes a flashcard system to learn a language. Furthermore, flashcards are

automatically generated for the user to review after a conversation with a conver-

sational agent. Aside from the flashcard feature and spaced repetition integration,

SuperMemo shares many of the features Univerbal has such as the ability to both

speak and type when responding to the conversational agent, translation, and

listening to audio. One difference from Univerbal is that SuperMemo allows the

user to manually select words from the conversation that they would like to add to

their reviews. Univerbal, on the other hand, picks words for the user automatically.

The messaging interface is shown in Figure 2.12.

In order to review words selected in a conversation, the user selects a deck

of cards in which a review session would start. During the review session, a
53https://www.supermemo.com/en

https://www.supermemo.com/en
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Figure 2.12: The conversation interface on SuperMemo

user encounters the words they had added from a previous conversation with the

context of the word provided below. The user is prompted to pronounce the word

in their target language in which they may grade manually based on how they

think they did. The grading system is similar to Anki’s except that it contains a

green smiling face, a yellow indifferent face, and a red frowning face. Each option

determines when the next review occurs. A user may also add notes to each of

the flash cards if necessary. Additionally, the user may utilize a built in dictionary

and request aid from an AI assistant which, like Univerbal, appears to be utilizing

ChatGPT. SuperMemo’s flash card reviews can be seen in Figure 2.13.

SuperMemo utilizes both spaced repetition, AI, and dictionaries. One of the

greatest limitations of SuperMemo is that there is no POS highlighting when

conversing with the conversational agent. A lack of such a feature inhibits a user

from determining the usage of the word in the sentence. Additionally, SuperMemo

does not break up difficult sentences until after a conversation is completed, which

is inefficient. Another limitation of SuperMemo is that during a conversation
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Figure 2.13: SuperMemo ”MemoCards” review which provide context for the
word seen in a previous conversation

the user can freely message in a language other than the language he or she has

intended to learn.

2.2.8 Discussion

One of the most common limitations of the tools presented in this section is the

lack of artificial intelligence – specifically conversational agents. Without such

functionality, a language learning application can quickly become rigid and only

allow what is added by a systems administrator to be learned. However, by

providing a dictionary and a conversational agent, a user can have more flexibility

on what to learn. One of the greatest limitations that all of the implementations

presented in this section has is a lack of POS highlighting with dictionary lookup.

Even tools such as Univerbal and SuperMemo – which utilize a conversational

agent – fail to provide an easy POS lookup for words with a reputable dictionary.

Instead, applications such as these use a translator for words in context, which
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relies on the accuracy of the AI tool rather than user intuition. Such intuition

is critical to a user’s understanding of their target language. However, the most

critical limitation in the explored applications is that spaced repetition is not

utilized.
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Chapter 3

Methodology

In order to resolve the limitations of current language learning tools, an immersive

language learning application, Immersio, was created. This tool is composed of

three different pages to encapsulate spaced repetition functionality, a conversa-

tional agent, and a dictionary. It also contains a review section, a chat page, and a

dashboard page.

3.1 Create the Review Page

The review section is the core of the spaced repetition system which has the role

of keeping track of all of the user review items. A review item may be a sentence,

a word, or a POS. The user is also able to create and review a custom review list

consisting of unique items they choose to add. A user may also choose to review

all of the user’s sentence review items, all of a user’s word review items, or all of

the review items in general. This functionality can be selected on the landing page

of the review page as seen in the Figma mockup in Figure 3.1.

Once a user chooses one of these options the user is greeted with a review item
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Figure 3.1: The landing page for the reviews

confirmation page which allows them to individually select what items will be

placed in their review queue. The review queue is a priority queue that orders

items first by the earliest due date and with a lower SRS level. A SRS level is a

property of a review item that determines the review frequency and ultimately the

next due date. The user also has the option to delete the review item, reset its SRS

level, and delete all of their review items. Additionally, the amount of reviews that

are due are displayed on this page as well as to the left on the navigation drawer.

The end results are similar to the Figma mock-up in Figure 3.2.

Once the user starts the review session, the user is prompted to translate the

first item that is popped from the review queue. The user then submits their

translation in which CLD2
1 compares a user’s translation to its own translation.

The mockup for this description is seen in Figure 3.3.

Once the backend compares the user’s translation with its own translation, the

conversation context is displayed. This conversation context shows whether or

not the user was correct in their translation. Specifically, the conversation context
1https://github.com/CLD2Owners/cld2

https://github.com/CLD2Owners/cld2
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Figure 3.2: The confirmation page for selecting reviews via a table

Figure 3.3: The translation prompt a user sees when doing one item of their
reviews

holds the purpose of showing the user’s message they added in context to the

conversation they had with a conversational agent. In case of suspicion of an

artificial grading failure, the user may also choose to assert that their translation

was correct or incorrect. The user also has the option to toggle showing the

corrections made by the artificial intelligent agent. Finally, the user can press a

button to continue to the next prompt (see Figure 3.4).
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Figure 3.4: The conversation context that is shown to a user

Finally, after several interactions between translation prompts and conversation

contexts, the user lands on the report page which shows what review items they

had answered correctly or incorrectly. This iterative process can be summarized in

the illustration of a finite state diagram in Figure 1.1. On this report page, the user

sees the percentage of questions answered incorrectly over the total amount of

questions. The user is also able to select individual review items that were either

correct or incorrect. The user can also return to the dashboard by clicking on the

home icon. The diagram for the reports is shown in Figure 3.5.

The frontend of Immersio was constructed utilizing React2 and TailWindCSS3

for rapidly designing UI elements. The React frontend communicates with the

Django backend via authenticated REST API. Listing 3.1 provides an example

of the REST API JavaScript code for retrieving a user’s review items by review

item type, via a path parameter, denoted by the reviewVariant variable. Once

the backend server responds with a JSON response of the user review items, the

items get set to a React state that is defined as reviewItems. React state allows the
2https://react.dev/
3https://tailwindcss.com/

https://react.dev/
https://tailwindcss.com/


53

Figure 3.5: The report that is displayed once a user completes all of the reviews for
their review session

HTML document object model (DOM) to change reactively if the state changes.

This is to say that the user interface changes and re-renders in the browser. In this

case, the reviewItems state was updated with setReviewItems.

1 // Retrieve the data from the server

2 const getReviewItems = async (reviewVariant: ReviewVariantType) => {

3

4 const reviewVariantString: string = reviewVariant.toString ()

5

6 // Get reviews

7 const getReviewsResponse = await fetch(‘${__VITE_SERVER_URL__ }/

api/v1/review/${reviewVariantString }/‘,

8 {

9 method: ’GET’,

10 headers: {

11 ’Content -Type’: ’application/json’,

12 ’Authorization ’: ‘Bearer ${user.access}‘

13 }

14 })
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15 const getReviewsJsonResponse = await getReviewsResponse.json()

16

17 setReviewItems(getReviewsJsonResponse)

18

19 // Primarily for selection boxes

20 setReviewItemsSelected(new Array(getReviewsJsonResponse.length).

fill(true))

21 }

Listing 3.1: JavaScript code that utilizes REST API to retrieve user review items

3.2 Create the Chat Page

The chat page implements a conversational agent with both TTS and STT tech-

nology, POS parsing, and translation capabilities with grammar correction. In

order to do this, we created an information hierarchy where a user can have many

conversations and a conversation can have many messages. This hierarchy is

described in PostgreSQL tables. Unlike language learning applications, which do

not enforce conversing in the user’s target language, we prevented the urge for

the user to use another language. We accomplished this by having an AI tool, that

resides in the Django backend4, to check the language of the user and determine

if they had been speaking in their target language. The AI tool that was used is

Compact Language Detector 2 (CLD2)5. If the user is found to not speak in their

target language, no message will appear and the frontend displays a toast message

that tells the user that they must speak in their target language. At the chat page’s

most basic level, the user is to send messages (in the user’s target language) to
4https://www.djangoproject.com/
5https://github.com/CLD2Owners/cld2

https://www.djangoproject.com/
https://github.com/CLD2Owners/cld2


55

the Django backend where OpenAI’s GPT-3.5-Turbo model6 generates a response

message in the user’s target language and is then returned to the client. The

interface for this can be seen in Figure 3.6. Communication with GPT-3.5-Turbo

is possible via a generated API key which is provided as a service by OpenAI.

However, GPT-3.5-Turbo alone is not capable of acting as a conversational agent

because the model does not retain information by default. For instance, if a user

attempts to ask the conversational agent to recall their name later in a conversation,

GPT-3.5-Turbo responds by stating that they do not know or forgot. For this reason,

we used LangChain7 to provide memory for the conversational agent. This is

accomplished through a ConversationBufferMemory, as provided by LangChain7,

and PostgreSQL8. The database has a dedicated table which stores the session_id,

a unique identifier of a conversation, and the message text, and time. We also

generated audio via CoquiTTS9 and stored the audio locally in IndexedDB10 to

save server resources. The audio resembles an elderly Japanese man who speaks a

Japanese sentence whenever the user presses the audio button near a message (see

Figure 3.6).

The user, additionally, has the ability to translate messages on the interface by

hovering over a translate button as seen in Figure 3.7. The translation shows up as

a tool-tip in this case. If the user desires to continually display the translation on

the screen without hovering, the user may press the translation button as seen in

Figure 3.8. Pressing the translation button toggles displaying the translation below

the actual message. This translation feature is implemented with the conjoined

work of pre-trained hugging face models. Whenever a user presses the translation
6https://platform.openai.com/docs/models/overview
7https://www.langchain.com/
8https://www.postgresql.org/
9https://github.com/coqui-ai/TTS

10https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB API

https://platform.openai.com/docs/models/overview
https://www.langchain.com/
https://www.postgresql.org/
https://github.com/coqui-ai/TTS
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
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Figure 3.6: The chat interface a user is able to use to communicate with a conversa-
tional agent

Figure 3.7: Translation occurs when a user hovers over the translation button of a
message

button a REST API is invoked in which the Japanese message gets passed to Django.

Once Django receives the translation API request, it sends it to a Docker container

via a RabbitMQ Remote Procedure Call (RPC) that contains Opus-Mt-JA-EN which

translates the Japanese text into English. Once the text is translated, it is pipelined
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Figure 3.8: Translation may also be continually displayed on the window when a
user presses the translation button

into another model to fix any grammar mistakes. This model is Coedit-Large by

Grammarly. Once the text has gone through this grammar correction phase it is

sent back to the Django Backend via a constructed RabbitMQ RPC. Finally, the

translated and grammatical text is returned to the React frontend where it can be

displayed and styled using TailwindCSS.

spaCy is utilized to provide dynamic POS tagging of generated words by

GPT-3.5-Turbo. Like the other pre-trained models in Immersio, spaCy is placed in

Docker. Communication happens through RabbitMQ RPC. With this configuration,

generated Japanese text is highlightable by individual POS. For example, a gener-

ated GPT-3.5-Turbo Japanese message is split up into verbs, nouns, determiners,

and punctuation to name a few. By hovering over these highlighted POS terms,

the text is enlarged to draw focus on that particular POS. Additionally, the user is

able to click on a POS item in which a modal, or popup, is displayed. This modal

shows the user the type of POS the item is along with providing definitions from

the JMDict dictionary using JMDictDB. In order to communicate with the spaced
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repetition ability of the reviews page, a button on the modal can be pressed in

order to add the POS item as a review item. This review item shows up in the

reviews page whenever its due date has passed.

Another feature on the chat page is the ability to send audio messages to

the backend which Whisper is to convert audio into text. IndexedDB saves the

audio locally to preserve server resources. So long as the user enables microphone

access for Immersio, the interface starts the recording state. This functionality is

illustrated in Figure 3.9.

Figure 3.9: The audio interface when the audio button is pressed

When the stop button and the send button is pressed, the resulting audio is

represented by a base64 string which is designed to be sent over REST API to where

it is handled by Django, pipelined through a RabbitMQ RPC, and transcribed with

Whisper. The transcribed text, which is in Japanese, then goes back to Django

where it is used by GPT-3.5-Turbo for Japanese text generation. After GPT-3.5-

Turbo generates its AI response, Django creates two messages in a PostgreSQL

table: one for the user’s message and one for the AI’s response. Then, Django



59

publishes to two different RabbitMQ queues to handle POS parsing and translation.

However, unlike the previous RabbitMQ RPC, Django does not wait for a response

from the translation and POS service but instead packages a response to send to

the React frontend. The React frontend then renders the messages once Django

responds – regardless of whether or not the POS or translation data has been

created. The user audio is also saved locally in IndexedDB so that the user does

not need to record again so long as the user does not clear their IndexedDB data.

The audio button is designed to record the audio in the case that the user would

like to re-record their message.

The audio overlay that is displayed when the stop button is pressed is illustrated

in the Figma diagram in Figure 3.10. At this point, the audio data is recorded

and the user can choose either to re-record, close the audio overlay, or press the

send button which sends their audio to the backend in which two messages are

generated. If the user presses the microphone button, the user can re-record their

audio. If the user presses the ”X” button at the bottom left of the audio overlay,

the audio overlay will close. If the user presses the send button at the bottom right

of the audio overlay, the user’s audio data will be sent to the backend to generate

two messages and the audio overlay will eventually close. If either the ”X” or send

button is pressed the audio overlay will close as seen in Figure 3.11.

In order to make rapid progress in development working with IndexedDB,

Dexie.js11, a high-level IndexedDB API wrapper, was used. Dexie.js is available

as a yarn12 or npm13 package and therefore can be imported as shown in line 1

in Listing 3.2. In order to create an IndexedDB datastore, we create a class that

extends from Dexie and created a constructor in which we call super() with the
11https://dexie.org/
12https://yarnpkg.com/
13https://www.npmjs.com/

https://dexie.org/
https://yarnpkg.com/
https://www.npmjs.com/
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Figure 3.10: The audio interface when the audio button is stopped

Figure 3.11: Whenever the cancel or send button is pressed the user will return to
their chat

name of the database passed (’UserData’ in this case). Finally, we created a version

of the datastore along with fields or columns. A datastore acts similarly to a table

in traditional relational databases. Because the datastore stores audio data, the

AudioData datastore contains the associated messageID and base64Audio along

with an auto-incrementing id. Because accessing IndexedDB is an asynchronous
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operation it is necessary to use JavaScript await and async syntax when adding

new base64 audio data. Otherwise, adding data to a IndexedDB datastore is as

simple as calling IndexedDB.AudioData.add() where data store field values are

passed as a JSON object.

1 import Dexie , { Table } from ’dexie’

2

3 interface IAudioData {

4 id?: number

5 messageID: number

6 messageAudio: string

7 }

8

9 /**

10 * Add audio data to IndexedDB

11 */

12 export const addAudioData = async (messageID: number , messageAudio:

string) => {

13 let successfullyAddedToIndexedDB = false

14

15 try {

16 // Add the new audio data

17 const id = await IndexedDB.AudioData.add({

18 messageID ,

19 messageAudio

20 })

21

22 successfullyAddedToIndexedDB = true

23

24 console.log("added audio. . . ")

25 }
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26 catch (error) {

27 successfullyAddedToIndexedDB = false

28 console.log(‘Error: ${error}‘)

29 }

30 return successfullyAddedToIndexedDB

31 }

32

33 // Create a database

34 class DexieIndexedDB extends Dexie {

35 // Tell the typing system to use our interface for declaring our

store

36 AudioData !: Table <IAudioData >

37

38 constructor () {

39 // Create a datastore called UserData

40 super(’UserData ’)

41 this.version (1).stores ({

42 // Primary key and indexed props

43 AudioData: ’++id, messageID , base64Audio ’

44 })

45 }

46 }

47

48 const IndexedDB = new DexieIndexedDB ()

49 export default IndexedDB

Listing 3.2: Example of creating a datastore in IndexedDB using Dexie.js
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3.3 Create the Dashboard Page

The dashboard page is a page that provides quick links to the reviews and chat

page. The dashboard also shows high-level information of the user’s progress, a

heat map, and recent messages. The mock-up for the dashboard can be seen in

Figure 3.12.

Figure 3.12: The dashboard page
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Chapter 4

Testing/Evaluation Plan

Immersio was tested with automated and manual testing to ensure optimal quality

assurance. Immersio’s automated testing consisted of using frontend testing tools

that can be used in React. Immersio’s manual testing consisted of a Japanese

evaluator who navigated through the application with guided instructions and

filled out an evaluation form.

4.1 Automated Testing

In order to perform automated testing on Immersio, we utilized integration testing

and end-to-end testing. Testing was done primarily on the frontend as testing user

experience is what we have determined to be most important. However, backend

tests were also employed. We used testing tools such as PyTest1, Mock Service

Worker2, Django’s tools for automated testing3, Vitest4, React Testing Library5,
1https://docs.pytest.org/en/7.4.x/
2https://mswjs.io/
3https://docs.djangoproject.com/en/5.0/topics/testing/
4https://vitest.dev/
5https://testing-library.com/docs/react-testing-library/intro/

https://docs.pytest.org/en/7.4.x/
https://mswjs.io/
https://docs.djangoproject.com/en/5.0/topics/testing/
https://vitest.dev/
https://testing-library.com/docs/react-testing-library/intro/
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and Cypress6. We performed black-box testing where we intended to test only

what the user can see or interact with. The majority of our automated tests did not

comprise of unit testing but integration and end-to-end testing.

4.2 Manual Testing

In order to test the accuracy of Japanese used by the AI models, Immersio was

tested by an evaluator who is fluent in Japanese via a three part evaluation

plan including reading an instruction document, interacting with the application,

and filling out an evaluation form. The instruction document was created via

Google Docs7 as it makes distributing a read-only document online feasible. The

application was accessed during the evaluation period for interaction at a publicly

available link. Finally, the evaluation form was a survey publicly available on

Typeform8 designed to be used in conjunction to Google Docs9.

The instructions document that was created on Google Docs was intended to

explain the basic functionality of Immersio, to provide evaluators of expectations of

how to evaluate the project, and most importantly, instructions on how to navigate

throughout the application. The instruction document also made references to

the evaluation form and made suggestions to the evaluator on what to look for

during the interaction with Immersio. The instruction document was organized

into various sections including: a description of what Immersio is and what it is

supposed to do, an overview detailing what to expect in the instruction document

as well as suggestions for the evaluator, a ”Getting Started” section to inform the
6https://www.cypress.io/
7https://www.google.com/docs/about/
8https://www.typeform.com/
9https://docs.google.com/document/d/1SI1Yc4etJZwPkRpsekWY7ywi6KSBSOfzPVTz4wKN6M/edit?usp =

sharing

https://www.cypress.io/
https://www.google.com/docs/about/
https://www.typeform.com/
https://docs.google.com/document/d/1SI1Yc4etJZwPkRpsekWY7ywi6KSBSOfzPVTz4wKN6_M/edit?usp=sharing
https://docs.google.com/document/d/1SI1Yc4etJZwPkRpsekWY7ywi6KSBSOfzPVTz4wKN6_M/edit?usp=sharing
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evaluator how to navigate to Immersio and how to sign up, a section to inform the

evaluator how to evaluate the chat page, a section to inform the evaluator how to

evaluate the review page, and finally a ”Wrapping Up” section to ensure that the

evaluation form was completed and to thank the user for evaluating Immersio.

Immersio is publicly available on Railway10 for the evaluator to interact with

the Japanese spoken by the AI models. The evaluator had read and typed Japanese

text, spoke Japanese, and listened to Japanese audio. The application was deployed

with the intention that the evaluator signs up to learn Japanese as an English

speaker. By doing so, the evaluator was expected to only speak Japanese when

conversing with the AI models on the chat page and expected to translate in

English during a review session on the review page. By navigating throughout

the application, the evaluator had been expected to take the translation accuracy,

grammatical correctness, and proper register or tone of the Japanese used by the

AI models into account in order to complete the evaluation form.

There were four main sections on the evaluation form. The first section only

consisted of a single question that asks the evaluator how well they understand

Japanese on a scale from one to five and can be seen in Table 4.1. One being

the most fluent and five being a beginner or a new Japanese learner. The scale

is based on the Japanese Language Proficiency Test (JLPT)11 metrics that rank

Japanese language proficiency from levels N1 to N5. The second section asked

the evaluator to evaluate Immersio’s chat page by asking questions in Table 4.2.

The third section contains questions concerning how the reviews page performed

in terms of Japanese accuracy and can be seen in Table 4.3. The fourth section

asks open-ended questions that allow the evaluator to provide feedback on the
10https://immersio.up.railway.app/
11https://www.jlpt.jp/e/about/levelsummary.html

https://immersio.up.railway.app/
https://www.jlpt.jp/e/about/levelsummary.html
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application’s abilities as noted in Table 4.4.

Question in English Question in Japanese Scale

How well do you speak Japanese? 日本語をどの程度お話しできます

か？

1-5

Table 4.1: The evaluation form’s first section’s question

Question in English Question in Japanese Scale

How accurate/natural was the

application’s chat page’s AI’s

Japanese response?

アプリのチャットページのAIの日

本語応答はどれくらい正確/自然

でしたか？

1-5

How well has the AI adhered to

the proper register, tone, or mood?

(Did the AI respond casually or for-

mally; For example: Did the AI use

です or ます when appropriate?)

AIが適切なレジスター、トーン、

またはムードにどれくらい適合

していましたか？（AIはカジュア

ルにまたはフォーマルに応答しま

したか？ 例：AIは適切な場面で

「です」または「ます」を使用し

ましたか？）

1-5

continues on next page
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How accurate was the AI’s transla-

tion?

AIの翻訳の正確さはどの程度で

したか？

1-5

How accurate was the AI’s trans-

lation at being grammatically cor-

rect?

AIの翻訳が文法的に正確であっ

たかどうか、どの程度でしたか？

1-5

How accurate were the dictionary

definition(s) for a given word?

(The dictionary is activated by

clicking on a word in a message)

特定の単語の辞書の定義は、どの

程度正確でしたか？（メッセージ

内の単語をクリックして辞書を表

示します）

1-5

How accurate was the AI gen-

erated audio when speaking

Japanese?

AIが生成した日本語音声の正確

さはどの程度でしたか？

1-5

When speaking Japanese using the

microphone button, how well did

the AI transcribe the text into

Japanese?

マイクボタンを使用して日本語で

話した場合、AIがテキストをどの

程度正確に日本語に転写しました

か？

1-5

When speaking Japanese using the

microphone button, how grammat-

ically correct was the AI as it tran-

scribed the text into Japanese?

マイクボタンを使用して日本語で

話した場合、AIがテキストを日本

語に転写する際の文法の正確さは

どの程度でしたか？

1-5

continues on next page
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How well has the AI remembered

information previously mentioned

in a conversation?

AIが以前の会話で言及された情

報をどの程度覚えていましたか？

1-5

How well did the AI prevent talk-

ing/messaging in English and only

allowed conversing in Japanese?

AIは、英語での話しやメッセー

ジの防止をどの程度うまく行い、

日本語での会話のみを許可しまし

たか？

1-5

Table 4.2: The evaluation form’s second section’s ques-

tions for the chat page

Question in English Question in Japanese Scale

During a review session, how well

was the AI able to grade the user’s

translated sentence?

レビューセッション中、AIは

ユーザーの翻訳された文章を評

価するのにどの程度うまく対応し

ましたか？

1-5

During a review session, how well

was the AI able to grade the user’s

translated word?

レビューセッション中、AIが

ユーザーの翻訳した単語を評価

するのにどの程度うまく対応しま

したか？

1-5

continues on next page
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During a review session, how accu-

rate was the AI able to generate the

translation of a sentence/message?

レビューセッション中、AIが文

やメッセージの翻訳を生成する能

力においてどれくらい正確でした

か？

1-5

During a review session, how ac-

curate was the AI able to generate

the translation of a word?

レビューセッション中、AIが単

語の翻訳を生成する能力において

どれくらい正確でしたか？

1-5

How well did the AI prevent trans-

lating the Japanese text into a lan-

guage other than English? For in-

stance, the AI should ideally not

allow the usage of Japanese when

translating and should only allow

English text during the translation

of a review item.

AIが日本語のテキストを英語

以外の言語に翻訳するのをどれ

くらい防止しましたか？たとえ

ば、AIはレビューアイテムの翻訳

時に日本語の使用を許可せず、英

語のテキストのみを許可すべきで

す。

1-5

continues on next page
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During a review session, how well

was the corrected answer anno-

tated?

レビューセッション中、修正され

た回答が適切に注釈付けされてい

たかどうか、どの程度でしたか？

1-5

How correct was the accuracy re-

port after the reviews were fin-

ished? Ideally, the accuracy report

should mark a message as incor-

rect if a review item was marked

incorrect at least once and the accu-

racy report should count a message

as correct if it a review item was

marked correct the first time.

レビューが終了した後の正確性

レポートはどの程度正確でした

か？理想的には、正確性レポート

は、少なくとも1回のレビューア

イテムが誤ってマークされた場合

にメッセージを不正確としてカウ

ントし、レビューアイテムが最初

に正しくマークされた場合にメッ

セージを正確としてカウントすべ

きです。

1-5

Table 4.3: The evaluation form’s third section’s ques-

tions for the reviews page
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Question in English Question in Japanese Scale

How well did the chat page per-

form? What did you like or dis-

like about the chat page?

チャットページ全体の性能

はどの程度でしたか？チャッ

トページについて好きな点や

気に入らなかった点は何です

か？

Open-Ended

What do you think could be im-

proved on the chat page?

チャットページを改善するた

めには、どのような点が改善

されるべきだと思いますか？

Open-Ended

How well did the review page

perform? What did you like or

dislike about the review page?

レビューページ全体の性能は

どの程度でしたか？レビュー

ページについて好きな点や

気に入らなかった点は何です

か？

Open-Ended

What do you think could be im-

proved on the review page?

レビューページを改善するた

めには、どのような点が改善

されるべきだと思いますか？

Open-Ended

How you think this application

could be improved?

このアプリケーションをどの

ように改善できると思います

か？

Open-Ended

Table 4.4: The evaluation form’s fourth section’s ques-

tions for open-ended responses on the application as a

whole
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Chapter 5

Results

This chapter discusses the finalized application, Immersio, and the evaluation

results of a Japanese speaking person who evaluated the tool. Section 5.1 explains

the process of navigating Immersio from the login and registration page to the chat

and review page which are the core components of the application. Sequential

instructions are provided as well as explanations to events that occur due to

user input. Additionally, the evaluator’s evaluation form responses are shown in

Section 5.2.

5.1 Description of Immersio

Figure 5.1 shows the architecture of Immersio. The frontend is comprised of a

Single Page Application (SPA), built upon React, which contains static HTML, CSS,

and JavaScript files. IndexedDB is also present on the frontend to store audio

data. The frontend communicates with the Django backend through REST API

in which JSON requests and responses are sent and received. Django acts as the

intermediary between the frontend and the rest of the backend services. Django
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Figure 5.1: The architecture of Immersio

is also responsible for handling access to user data in PostgreSQL and Redis.

Django communicates with the backend AI services through RabbitMQ queues

and RabbitMQ RPCs. In the case that RabbitMQ RPCs are not used as a means for

communication between the services and Django, Django uses Python threads to

handle consuming from the various services. The main Django thread only needs
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to publish to RabbitMQ queues. In terms of user data, Django communicates with

PostgreSQL through its ORM. Django’s ORM performs high-level Create, Read,

Update, and Delete (CRUD) actions on user data without writing raw SQL queries.

Django also uses its ORM to retrieve dictionary data from JMDictDB which resides

in the PostgreSQL database. In order to hold temporary information that does

not need to be perpetually stored, such as a user’s review session, Redis and

Django’s cache framework is employed. Anything else requested by the frontend,

such as the text generation from OpenAI’s GPT-3.5-Turbo model and access to

conversation memory by LangChain, is handled by Django directly

When a given user first attempts to use Immersio they are greeted with a

landing page as seen in Figure 5.2 followed by a registration page, by clicking on

the ”Try Immersio” button, in the top right corner, in which they can choose a

source language. The source language is the language the user chooses to learn a

target language from. In Immersio’s case, English is to be selected for the source

language as seen in Figure 5.3.

After selecting a source language, the user is able to select a target language.

The target language is the language the user intends to learn. Because Immersio is

designed to cultivate Japanese language learning among English speakers, Japanese

is the language a user will select as a target language as seen in Figure 5.4.
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Figure 5.2: The landing page of Immersio

Figure 5.3: During registration of Immersio, the user is prompted to select a source
language
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After the user has selected both source and target language, the user is

prompted to enter a username, email, password, and to retype their password

as seen in Figure 5.5. If a user has previously registered for Immersio, the user

simply has to login as seen in Figure 5.6.

Upon logging into Immersio, the user is greeted with a dashboard page that

is intended to provide a high-level overview of the application. The dashboard

consists of a heat map of a user’s review’s done per day as well as the recent con-

versations that a user has engaged in with the conversational agent. Additionally,

the user can quickly go to their reviews or start a chat conversation by clicking on

the link blocks. Link blocks contain a title and a short description of what the user

can expect when pressing the link. Additionally, a user’s review goal is displayed,

along with its associated progress bar, which is defaulted at fifty review items per

day (i.e., a user must review fifty review items every day). The dashboard can be

Figure 5.4: After selecting a source language a user selects a target language –
Japanese in Immersio’s case
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Figure 5.5: During the final stages of registration, a user is prompted to enter
username, email, password, and to retype their password

Figure 5.6: A user can login if they have previously registered before
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seen in Figure 5.7 which contains the heat map, the recent conversations, and the

link blocks.

The user can click on the chat link block to go directly to the chat page where

conversation creation is possible. The user can also navigate there using the side

navigation panel on the left hand side of the screen. A user can create a new

conversation by typing in an input box an pressing the ”enter” key on the keyboard.

The user can alternatively click on the send button to the right of the input box. If

the user types in a language other than their target language, Japanese, the user

will receive an error message back from the server in the form of a toast message.

The error message automatically disappears after a few seconds but can manually

be closed via its close button. A summary of these features can be seen in Figure

5.8.

If the user sends a message in their target language, in this case, Japanese,

Figure 5.7: The dashboard page complete with a reviews heat map, a recent
conversation block, and link blocks to the reviews and chat page
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Figure 5.8: The chat page where a user is attempting to speak in English when the
langauge expected was in Japanese

the server will respond with a response from the conversational agent produced

by LangChain1 and GPT-3.5-Turbo2. During this time, RabbitMQ also receives

the AI’s response as well as the user’s response in which two additional actions

are performed. First, RabbitMQ pipelines the response to a service in a Docker

container which handles POS parsing which is where spaCy resides. Second,

RabbitMQ sends the data to another Docker container which contains the Hug-

ging Face translation model, opus-mt-ja-en3, which translates the message from

Japanese to English. opus-mt-ja-en also sends its translated output to Gram-

marly’s Hugging Face model, coedit-large4, in its own Docker container. Both

the POS and translation data is sent back to Django over RabbitMQ and stored in

a Message table in a PostgreSQL database. Because the POS and translation data
1https://www.langchain.com/
2https://platform.openai.com/docs/models
3https://huggingface.co/Helsinki-NLP/opus-mt-ja-en
4https://huggingface.co/grammarly/coedit-large

https://www.langchain.com/
https://platform.openai.com/docs/models
https://huggingface.co/Helsinki-NLP/opus-mt-ja-en
https://huggingface.co/grammarly/coedit-large
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is generated asynchronously, that is without slowing the response time from the

server to back to the client, the user does not have to wait a long time to view the

generated messages. This allows the messages to be rendered nearly immediately

after the data is given to the client. After a few seconds on the frontend, the

POS and translation data are automatically requested via a REST API request in

a React useEffect hook to retrieve the data. The POS items are highlighted and

color-coded according to POS type and the translation button shows the English

translation on hover and continuously shows the English translation below the

message if the button is pressed. Messages also include time and date creation

stamps. A visual representation of this description can be seen in Figure 5.9.

A user may also use their microphone to record audio so that it may be sent

to the backend where it is transcribed to Japanese text using WhisperTTS5. This

5https://github.com/openai/whisper

Figure 5.9: A Japanese conversation between a user and a conversational agent
where POS items are highlighted and the translation button is being used

https://github.com/openai/whisper
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occurs whenever a user presses the record audio button on the bottom right of the

chat page and chooses to allow microphone access to the browser. At this point,

the audio overlay appears and allows recording audio by pressing the microphone

button and can be stopped by pressing the stop button where the stop button can

be seen in Figure 5.10. Afterwords the user can choose to send the audio message,

to the backend so Japanese text gets transcribed, by pressing the send audio button

as seen in Figure 5.11.

Upon hovering over a POS item in a message the POS item’s text size increases

slightly as seen in Figure 5.12. If the user clicks on the POS item, a modal will

appear. A modal is a term for a popup that allows the user to see that they are still

on the same page while allowing the user to perform other actions. The modal

displays POS information using a dictionary stored in a PostgreSQL database. The

dictionary in question is the JMDict database, which is an English-to-Japanese

Figure 5.10: The stop button on the audio overlay that a user will see while
recording audio
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Figure 5.11: The audio overlay that shows the record button as well as a cancel
and send audio button

dictionary. The modal displays JMDict’s definitions depending on the type of

word. The user can also add the word to their reviews by pressing the review

button. An illustrated example can be seen in Figure 5.13. Once the user presses

the review button, the review button is replaced with a manage review button

item as seen in Figure 5.14. Similar to when a user presses the review item for a

word, a user may also review a complete sentence by pressing the review sentence

button on a message bubble. By doing this, the review sentence button updates its

appearance as seen in Figure 5.15.

In order to review added review items the user may navigate to the reviews

page by clicking on ”Reviews” on the navigation panel. The user should see three

UI elements that are shaped like blocks which are links. This interface is called the

reviews landing page. Assuming that the user has already added review items

previously, the total amount of due review items, counting all words and sentences,
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Figure 5.12: A POS item englargening as a user is hovering over it

Figure 5.13: The POS modal that displays the definitions of a POS item as well as
the POS type and a way to add the POS item to the reviews
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Figure 5.14: After the Review button has been pressed

Figure 5.15: After pressing on the review sentence button on a message bubble
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is displayed on this page under the ”REVIEW ALL” link block. Additionally,

the amount of due review items can also be seen on the left-hand side on the

navigation panel. If the user presses the ”REVIEW ALL” link block, a confirmation

window shows up listing all the review items a user will review during a review

session. Similarly, if the user presses the ”REVIEW SENTENCES” or ”REVIEW

WORDS” link block a confirmation window will show up but only for review

items of those review types. A diagram for this description can be seen in Figure

5.16.

Regardless of the type of link blocks a user had pressed on the reviews landing

page, the user is greeted with a review confirmation page which provides detailed

information of the review items that a user chooses to review. The review confir-

mation page organizes review items in a tabular format with information of each

review item including the content, the translation, the SRS level, the SRS name, the

Figure 5.16: The reviews landing page with various options to review information
via link blocks after the user navigates to the reviews
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review frequency, the last review date, and the next review date. All due review

items by default will say ”Now” for the next review date whereas the last review

date depends on when the item reviewed during a review session. The SRS level

and SRS name are Immersio’s implementation of Leitner system boxes. The SRS

level determines the SRS name and review frequency. The SRS level, SRS name,

and review frequency are color-coded and will change color depending on the SRS

level. The user also has the ability to edit a review item by pressing the edit button

denoted by the pencil icon. These details can be seen in Figure 5.17.

If the user clicks on the edit button of a review item, a modal is displayed in

which the user can choose to edit a review item. Within this modal, a user has

the ability to delete a review item by pressing the delete button which can be

seen in Figure 5.18. Once this button is pressed, another modal, which acts as a

confirmation window, displays. This modal is responsible for confirming with a

Figure 5.17: The review confirmation page where a user can see details of the
review items they will review
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user if they would like to delete a review item. The modal informs the user that

deleting the review item is irreversible and cannot be undone if they proceed. This

confirmation modal can be seen in Figure 5.19. If a user does delete a review item,

the due reviews count is updated accordingly as seen in Figure 5.20.

By default, all review items will be reviewed when the user presses the start

review session button on the top right. However, the user can choose to select

or unselect certain review items by clicking on the review item’s check box or by

clicking on the review item in the table. If a review item’s checkbox is unchecked

it will not show up during the review session. Otherwise, it will be added to the

review session. The user can toggle all review items at once by clicking on the

checkbox at the top left of the reviews confirmation page. If the user does not have

any review items selected, the start review session button cannot be pressed as no

button will be displayed. Similarly, when there are no review items currently due

Figure 5.18: The edit review item modal which is necessary to open in order to
delete a review item
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Figure 5.19: The delete review item confirmation modal which informs a users
that deleting a review item is irreversible

Figure 5.20: Deleting a review item results in decrementing the review item count
and the review item will no longer be available for review
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the start review session button will not display. This can be seen in Figure 5.21.

Once a review session has been created by pressing the start review session

button in the top right corner of the review confirmation page, a review queue is

generated that contains all selected due review items. A review session consists of

three states: the translation state, the conversation context state, and the review

report state. During the translation state the user is prompted to translate a word

or sentence. Words are highlighted to denote what word to translate. Whenever

the user presses the check answer button or presses the enter key on the keyboard,

the backend evaluates whether or not the user’s translation was correct. A loading

animation will be displayed and input is disabled to prevent multiple REST API

requests from being sent. An illustrated example can be seen in Figure 5.22.

The backend evaluates a user’s answer by generating a translation of the

original message itself and comparing the similarity of the generated translation

Figure 5.21: A review confirmation page that does not display the start review
session button on the top right due to not containing selected review items
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Figure 5.22: A word that a user is prompted to translate along with the loading
animation

against a user’s translation. If the similarity rating is above a certain threshold, the

user’s translation is marked as correct otherwise it is marked as incorrect. The

information that gets sent back to the user includes a boolean value of whether

the answer was correct or not along with the generated translation. Once this

data is received by the client, the conversation context state starts and displays

whether or not the answer is correct. The user also receives the conversation

context that the word or sentence was in by performing another REST API request

to the backend. During the conversation context state, a user has the ability to

undo a submitted translation, the ability to toggle the corrected translation, and

the ability to continue to the next sentence. This can be seen in Figure 5.23.

If the user presses the continue button a REST API PATCH request is made.

This does not happen if a user presses the undo button. If a user presses the

undo button on the bottom right during the conversation context state, the review
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Figure 5.23: The conversation context that is displayed once the backend finishes
evaluating a user’s translation

item’s SRS information is not modified. When the undo button is pressed, the user

returns to the translation state to attempt to re-translate the word or sentence. The

effects of clicking the undo button can be seen in Figure 5.24.

If the user translates a word or sentence and the backend evaluates that it is

incorrect, the user’s translation will be annotated with the correct answer. This is

done by making words of the user’s translated text, that are not in the generated

translation, red and contain a strike-through. Words that are in the generated

translation but not in the user’s translation are green. Finally, words that are both

in the user’s translation and in the generated translation are white. This can be

seen in Figure 5.25. If the user would like to see their original translation they may

press the hide answer button to show show their original translation. This button

can be toggled on and off to show the user’s original translation along with the

annotations. The result of pressing the hide answer button can be seen in Figure
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Figure 5.24: After pressing the undo button during the conversation context state
the state changes to the translation state

5.26.

In the event that a user has a sentence review item in their review queue, during

the translation state an arrow points to the message to be translated. Unlike a

word review item that is highlighted during the translation state, no part of the

sentence is highlighted. Both word and sentence review items will iterate between

the translation state and conversation context state until the review items in the

review queue are empty. If a review item is marked as incorrect it gets reshuffled

in the review queue to be encountered during the same review session. A sentence

review item can be seen in Figure 5.27.

Even if the generated translation and the user’s translation are not completely

the same, the user can still get a translation correct. The idea is that the user gets

the idea of what the translation means but does not have to provide a word-for-

word or literal translation to the item. In cases such as these, the review item can
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Figure 5.25: A user’s translation that was deemed incorrect and annotated accord-
ing to the generated translation

Figure 5.26: The result of pressing the hide answer button



97

Figure 5.27: A sentence review item as seen during a review session

be marked as correct but have some words that are annotated to show that it was

not the literal translation. This can be seen in Figure 5.28.

In some rare cases, a user may wish to assert that they were correct or incorrect

regardless of the evaluation from the backend or when pressing the undo button

does not seem reasonable or is time consuming. For this reason, a user may also

press on the exclamation icon near the ”Your Answer” title to assert whether or

not the user was correct or incorrect. If the evaluation from the backend claims

that a user was correct a user may assert that they were incorrect as seen in Figure

5.29. Similarly, if a user was incorrect, he or she may assert that they were correct

as seen in Figure 5.30.

The review queue becomes empty when a user answers all review items in

the review queue correct at least once. Once the review queue is empty, a user is

transitioned to the review report state in which a report of the review session will

be generated. The review report consists of an accordion to display user messages



98

Figure 5.28: A user translation marked as correct even though not every word was
the same as the generated translation

Figure 5.29: The ability to assert that the user was incorrect
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Figure 5.30: The ability to assert that the user was correct

that appeared in the review session. An accordion is a type of UI component that

can show a drop down of information when a header is pressed. An accordion can

have several drop downs with its associated header. The review report’s accordion

along with an accuracy of the number of correct review items over the total review

items can be displayed in Figure 5.31. What is deemed a correct review item

according to the translation accuracy is whether or not a review item has been

ever been marked as incorrect. If a user gets a review item correct on the first try

of translating a review item, or asserts that they were correct the first time they

encounter the review item, the answer will be marked as correct in the review

report. Figure 5.32 shows a review report with both correct and incorrect review

items. The user may finally choose navigate to the dashboard by clicking on the

home button provided on the review report state.

During the translation state, a user must translate a review item in their own

source language. If the user does not translate in their source language, say English,
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Figure 5.31: The review report state that shows an accordion of correct and
incorrect items as well as the translation accuracy

Figure 5.32: The review report page which displays both a correct and incorrect
review item with a 50% accuracy
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he or she will be prompted with a toast message stating that they must translate in

the source language. This is done to prevent a user from accidentally retyping the

sentence or word they are to translate and accidentally getting the word incorrect.

This is similar to the message that is displayed when a user attempts to converse

with a chat agent on the chat page in a language that is not their target language.

This toast message can be seen in Figure 5.33.

Figure 5.33: The toast message that is displayed when a user attempts to converse
with a chat agent on the chat page in a language that is not their target language
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5.2 Testing Results

The Japanese efficacy of Immersio’s AI models was evaluated by having a native

Japanese speaker evaluate the tool. The Japanese evaluator performed the role of a

user who is learning Japanese as their target language and their source language

as English. For this reason, the evaluator was fluent in both English and Japanese.

On average, the evaluator rated the tool 3.24 out of 5. This average is calculated

from the seventeen opinion scale questions which are rated one to five.

The evaluator began the evaluation process by accessing an instructions docu-

ment6 in order to understand the purpose, capabilities, and necessary evaluation

metrics of Immersio. The instructions document provided links to the Immersio

web application7 as well as to the Typeform evaluation form8. After adhering to

the information in the instruction document and interacting with Immersio, the

evaluator was asked to fill out the evaluation form.

The evaluation form consists of twenty-three questions including one question

asking the evaluator of their Japanese language proficiency, seventeen opinion

scale questions, and five open-ended questions. Both the Japanese proficiency

question and the fourteen opinion scale questions are rated from one to five.

The Japanese proficiency question asked the evaluator, ”How well do you speak

Japanese?”, and is scored based on the JLPT proficiency levels where a selection

of ”1” denotes an N5 proficiency or a basic understanding of Japanese up to a

”5” which resembles an N1 proficiency or a native proficiency. The opinion scale

questions are rated from one to five where ”1” entails poor quality while a ”5”

entails excellent quality. The five remaining open-ended questions concerned the
6https://docs.google.com/document/d/
7https://immersio.up.railway.app/
8https://evaluation-form.typeform.com/report/

https://docs.google.com/document/d/1SI1Yc4etJZwPkRpsekWY7ywi6KSBSOfzPVTz4wKN6_M/edit?usp=sharing
https://immersio.up.railway.app/
https://m73moyim9ok.typeform.com/report/nMU823dw/CdK57Ixe8N1bIKCt
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overall quality of a particular page or the application as a whole as well as the

suggestions for improvements of the application.

The evaluator scored a ”5” on the Japanese proficiency question with a native

proficiency. Ten of the opinion scale questions concerned the chat page by asking

the user to rate the Japanese accuracy of the AI models behind speech and text

generation and comprehension of user text and user speech. Additionally, the

evaluator evaluated the dictionary, how well the AI remembered information, how

well the AI had prevented the user from speaking in a language that was not their

target language, grammar accuracy, mood, and register of the Japanese generated

by the AI models. The other six remaining opinion scale questions concerned the

review page in which the evaluator evaluated the translation accuracy of the AI, the

ability to generate both words and sentences, how well the corrected answer was

annotated, and how well the AI prevented translating Japanese text in a language

other than the source language English.

Immersio had performed well in Japanese in some aspects while failed in

others. On the chat page, Immersio performed the worst in its ability to generate

accurate dictionary definitions and was unable to transcribe audio from the user

into Japanese text. However, Immersio performed best in its ability to generate

textual Japanese and prevention of using English when it should have only allowed

Japanese. On the review page, Immersio performed only slightly better than poorly

in its ability to generate a translation of a word. On the other hand, Immersio

performed best when the evaluator asked the AI to generate a translation of a

sentence or message as well as its capacity to prevent translating Japanese in a

language other than the source language, English.

The main issues with Immersio’s evaluation performance can be expressed

in the evaluator’s comments to the open-ended section of the evaluation form.
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The evaluator was unable to access the Part-of-Speech so the dictionary could

not be opened. This problem is more than likely the result of the Part-of-Speech

data entering the database asynchronously while the main message data is being

sent back to the client. The Part-of-Speech data is intended to load around ten

seconds after the REST API response for the client was returned because RabbitMQ

may not have consumed or published quick enough between spaCy and Django.

Perhaps for a similar reason, the evaluator had seen that the translations for the

chat messages were blank. When the evaluator attempted to record audio, the

page did not load – more than likely due to the Whisper STT service failing due

to dependency, environment, or FFmpeg compatibility issues. The evaluator also

reported minor grammar issues with the AI’s text generation on the chat page. In

terms of the reviews page, the evaluator had asserted that unless the answer is

exactly the same as what is expected, it will be annotated erroneously by the AI.

In terms of the spaced repetition abilities of Immersio, the evaluator claimed that

it would be best to have the review items be available to retake after the review

session. Overall, the evaluator had desired for the application to include all of the

features described in the instruction document. A complete summary of all of the

evaluator’s responses, their associated questions, and ratings can be seen in Table

5.1.
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Question in English Question in Japanese Rating

How well do you speak

Japanese?

日本語をどの程度お話

しできますか？

5

How accurate/natural

was the application’s

chat page’s AI’s Japanese

response?

アプリのチャットページ

のAIの日本語応答はど

れくらい正確/自然でし

たか？

5

How well has the AI ad-

hered to the proper regis-

ter, tone, or mood? (Did

the AI respond casually

or formally; For example:

Did the AI use です or

ます when appropriate?)

AIが 適 切 な レ ジ ス

ター、トーン、また

はムードにどれくらい

適合していましたか？

（AIはカジュアルにま

たはフォーマルに応答し

ましたか？ 例：AIは適

切な場面で「です」また

は「ます」を使用しまし

たか？）

4

How accurate was the

AI’s translation?

AIの翻訳の正確さはど

の程度でしたか？

3

How accurate was the

AI’s translation at being

grammatically correct?

AIの翻訳が文法的に正

確であったかどうか、ど

の程度でしたか？

4

continues on next page
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How accurate were the

dictionary definition(s)

for a given word? (The

dictionary is activated by

clicking on a word in a

message)

特定の単語の辞書の定

義は、どの程度正確でし

たか？（メッセージ内の

単語をクリックして辞書

を表示します）

1

How accurate was the

AI generated audio when

speaking Japanese?

AIが生成した日本語音

声の正確さはどの程度で

したか？

2

When speaking Japanese

using the microphone

button, how well did the

AI transcribe the text into

Japanese?

マイクボタンを使用

して日本語で話した場

合、AIがテキストをど

の程度正確に日本語に転

写しましたか？

1

When speaking Japanese

using the microphone

button, how grammati-

cally correct was the AI

as it transcribed the text

into Japanese?

マイクボタンを使用

して日本語で話した場

合、AIがテキストを日

本語に転写する際の文法

の正確さはどの程度でし

たか？

1

continues on next page
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How well has the AI

remembered information

previously mentioned in

a conversation?

AIが以前の会話で言及

された情報をどの程度覚

えていましたか？

4

How well did the AI

prevent talking/messag-

ing in English and only

allowed conversing in

Japanese?

AIは、英語での話しや

メッセージの防止をどの

程度うまく行い、日本語

での会話のみを許可しま

したか？

5

During a review session,

how well was the AI able

to grade the user’s trans-

lated sentence?

レビューセッション

中、AIはユーザーの翻

訳された文章を評価する

のにどの程度うまく対応

しましたか？

3

During a review session,

how well was the AI able

to grade the user’s trans-

lated word?

レビューセッション

中、AIがユーザーの翻

訳した単語を評価するの

にどの程度うまく対応し

ましたか？

3

continues on next page
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During a review session,

how accurate was the AI

able to generate the trans-

lation of a sentence/mes-

sage?

レビューセッション

中、AIが文 やメッセー

ジの翻訳を生成する能

力においてどれくらい正

確でしたか？

5

During a review session,

how accurate was the AI

able to generate the trans-

lation of a word?

レビューセッション

中、AIが単 語の翻訳を

生成する能力において

どれくらい正確でした

か？

2

During a review ses-

sion, how well was the

corrected answer anno-

tated?

レビューセッション

中、修正され た回答が

適切に注釈付けされてい

たかどうか、どの程度で

したか？

3

continues on next page
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How well did the AI

prevent translating the

Japanese text in a lan-

guage other than En-

glish? For instance,

the AI should ideally

not allow the usage of

Japanese when translat-

ing and should only al-

low English text during

translation of a review

item.

AIが日本語のテキスト

を英語以外の言語に翻

訳するのをどれくらい

防止しましたか？たとえ

ば、AIはレビューアイ

テムの翻訳時に日本語の

使用を許可せず、英語の

テキストのみを許可すべ

きです。

5

continues on next page
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How correct was the ac-

curacy report after the re-

views were finished? Ide-

ally the accuracy report

should mark a message

as incorrect if a review

item was marked incor-

rect at least once and the

accuracy report should

count a message as cor-

rect if it a review item

was marked correct the

first time.

レビューが終了した後

の正確性レポートはどの

程度正確でしたか？理想

的には、正確性レポート

は、少なくとも1回のレ

ビューアイテムが誤って

マークされた場合にメッ

セージを不正確としてカ

ウントし、レビューアイ

テムが最初に正しくマー

クされた場合にメッセー

ジを正確としてカウント

すべきです。

4

continues on next page
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How well did the chat

page perform? What did

you like or dislike about

the chat page?

チャットページ全体の

性能はどの程度でした

か？チャットページにつ

いて好きな点や気に入ら

なかった点は何ですか？

”I was unable to access

part-of-speech, so could

not open a dictionary.

Also translations for the

chat was blank. I was

able to record my audio,

but could not upload so

could not use it in the

chat. Iy just continues to

load forever. In the

review page I think it is

better make a line break

when there is another

answer. otherwise it can

be confusing, if the

answer is correct or not.

overall I think it went

successful with the chat,

because grammer was

correct and choose of

words were natural.

There were some

grammer mistakes, but it

is AI so I think it can be

fixed within time. ”

continues on next page
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What do you think could

be improved on the chat

page?

チャットページを改善

するためには、どのよう

な点が改善されるべきだ

と思いますか？

”Part-of-speech should

be accessable to know

each words. If the

answer is correct but

there is a another way to

answer there sholud be

line break between the

phrase. Audio should be

ready to upload after

recording. Also I could

not hear most audio

voice from the AI chat. ”

continues on next page
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How well did the review

page perform? What did

you like or dislike about

the review page?

レビューページ全体の

性能はどの程度でした

か？レビューページにつ

いて好きな点や気に入ら

なかった点は何ですか？

”page itself and its

performance was perfect

but the visuality I think

it can be better. At first

look it is difficukt to

know if my answer is

correct or not because

green check and red x is

small. Also it is hard to

recoznize my answer is

correct because unless

each word is perfectly

same it will be retyped

by AI. ”

What do you think could

be improved on the re-

view page?

レビューページを改善

するためには、どのよう

な点が改善されるべきだ

と思いますか？

”The past review page

and its resluts should be

visable, so they would

be able retake the test

afterwards. ”

How do you think this

application could be im-

proved?

このアプリケーション

をどのように改善できる

と思いますか？

”It needs all the features

introduced in the

instruction. ”

Table 5.1: The results from the Japanese evaluator
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Chapter 6

Conclusions and Future Work

Language learning applications have advanced in the last two decades, especially

because of the modern capabilities of artificial intelligence and large language mod-

els. However, many language learning applications that use artificial intelligence

fail to integrate POS highlighting, dictionary lookup, and an easy-to-use spaced

repetition system. For these reasons, we proposed a wholistic Japanese learning

application called Immersio. Specifically, Immersio integrates the following ele-

ments: spaced-repetition, active recall, and an artificial intelligent conversational

chat agent both in voice and in text. Immersio achieves this through its easy-to-use

chat interface that supports Speech-to-Text, Text-to-Speech, dictionary lookup,

artificial intelligent memory, Japanese-to-English translation and English grammar

correction abilities, and Part-of-Speech technologies. The chat page additionally

keeps track of previous conversations and the individual messages associated with

them for access at later a later time. Immersio also implements spaced repetition

through the Leitner system through its efficient review page that allows a user

to have flexibility in translating Japanese text into English, which is graded via

artificial intelligence and annotated. Moreover, an arbitrary selection of review



116

items on the review page can be added to a review session manually and reviewed

review items will re-emerge to be reviewed depending on their SRS review fre-

quency. The dashboard page keeps track of the amount of review items done per

day as well as the most recent conversation.

As future work, we intend to improve automated testing so that the review and

chat page work optimally and can easily be monitored if new changes are added,

which could potentially break some functionality. For this reason, we will use more

automated end-to-end testing using Cypress and more integration testing with

Vitest. Also, we plan to implement performance testing to ensure that the client

does not wait long times to receive responses from the backend as experienced by

the evaluator. For instance, the evaluator was able to record their audio but did not

receive a response back from the backend. This is particularly problematic when

using RabbitMQ RPCs to retrieve information from the translation and grammar

services. It is particularly vital for Immersio to handle high loads and traffic when

multiple users are using the site at once. Furthermore, we will experiment with

making the POS items more readily available to the user so they do not have to

wait a long time to see their messages highlighted. The evaluator had mentioned

that they were unable to access the dictionary because there was no POS. This

is likely because spaCy had not returned a response fast enough for Django to

update the database. If there is no POS information in the database and Django

responds to the frontend with an empty POS JSON object, React will simply

render the text of the message and not construct a message with POS items. One

area of research that will be explored to handle this is the JavaScript WebSocket

API1. We will also research using Celery2 with Django and RabbitMQ in order to
1https://developer.mozilla.org/en-US/docs/Web/API/WebSocketsAPI
2https://docs.celeryq.dev/en/v5.3.6/getting-started/introduction.html

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://docs.celeryq.dev/en/v5.3.6/getting-started/introduction.html
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efficiently communicate with one another. Moreover, we will look into upgrading

the conversational agent by replacing GPT-3.5-Turbo with GPT-4 in order to handle

some grammatical errors mentioned by the evaluator.

Also, more native Japanese speakers will be asked to evaluate the tool. Evalua-

tors should encompass multiple regions of Japan that cover multiple dialects such

as the Kansai and Tokyo dialects. For this reason, the evaluation form will have to

be updated with new questions to reflect greater diversity for Japanese evaluation.

Additionally, we intend for Immersio to become more secure and therefore

will need to be properly modified for production. One security flaw is that the

registration page allows any password to be used such as ”1234”. We intend to

allow only reputable passwords of a specific length and with certain characters

instead of allowing simple passwords. Additionally, we will look into encrypting

the user messages so that user messages are kept private in the database.

Furthermore, we will improve the user interface so that it is more consistent

across all devices and screens. For instance, during development, there were

instances where the screen would show white blocks at the bottom due to how

styling was done. On mobile browsers, there are issues with how the chat page

renders. Because of this, Immersio cannot be used on mobile devices. Additionally,

we will look for better ways to improve the review page so that it is more intuitive.

For instance, we will experiment with adding a line break, increasing the size of

the green check-mark, and increasing the size of the red ”X” on the reviews page

as per the evaluator’s comments. Additionally, we will experiment with ways of

being able to review previous items listed on the review page so that a user can

re-review necessary information.

In order to make development easier over time, we intend to more effectively

implement continuous integration and continuous deployment. This work would
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entail incorporating GitHub actions to work effectively with automated tests.

GitHub would also need to automatically deploy the new services to our given

hosting provider depending on the branch. For instance, we will need to create

branches specifically for production and staging.
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